Diamond Drilling Report
 on the
 Sam Group of Claims
 Kamloops Mining Division NTS 82M/4W

Minnova Inc.
A. Hill

Vancouver, B.C.

$$
\text { September, } 1991
$$

ARIS SUMMARY SHEET

```
District Geologist, Kamloops
Off Confidential: 92.08.09
ASSESSMENT REPORT 21689 MINING DIVISION: Kamloops
PROPERTY: Samatosum
LOCATION: LAT 51 08 00 LONG 119 49 00
    UTM 11 5668206 302932
    NTS 082M04W
CAMP: 039 Adams Plateau - Clearwater Area
CLAIM(S): Mining Lease 41
OPERATOR(S): Minnova Rea Gold
AUTHOR(S): Hill, A.R.
REPORT YEAR: 1991, 27 Pages
COMMODITIES
SEARCHED FOR: Silver,Copper,Lead,Gold
KEYWORDS: Paleozoic,Eagle Bay Formation,Tuffs,Argillites,Turbidites
    Limestones,Pyrite,Sphalerite,Galena,Chalcopyrite,Tetrahedrite
    Sericite schists
WORK
DONE: Drilling,Geochemical
    DIAD 1002.4 m 2 hole(s);NQ
    SAMP 122 sample(s) ;ME
    ?ILE: 082M 244
```


DIAMOND DRILLING REPORT on the
 ```SAM GROUP OF CLAIMS```

Mr.
KAMLOOPS MINING DIVISION
NTS 82M/4W

Lat $\quad 51^{\circ} 08^{\prime} N \quad$ Long $\quad 119^{\circ} 49^{\prime} \mathrm{W}$

Operator:
Minnova Inc. 3-311 Water Street.

Vancouver, B.C. V6B 1B8

GEOLOGICALBRANCH

Page No.
Introduction 1
Location and Access 1
Physiograpghy and Vegetation 1
Property 1
Property History 2
Regional Geology 3
Property Geology 3
Diamond Drilling 4
Results of DDH RG394 4
Results of DDH RG395 4
Conclusion 5
LIST OF FIGURES
Figure 1. Location Map (follows page 1)
Figure 2. Claim Map (follows page 2)
Figure 3. Geology and Drill Hole Location Map (follows page 4)
APPENDICES
Appendix A. Statement of CostsAppendix B. Diamond Drill Logs and Analytical ResultsAppendix C. Statement of Qualifications

INTRODUCTION

The Sam Group of claims encompasses some 2000 hectares of land located approximately thirty kilometers east of Barriere, B.C. The property includes the Samatosum Mine, which began extracting polymetallic ore in June 1989, from a deposit with reserves estimated at 634,984 tonnes grading $1035 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.2 \% \mathrm{Cu}, 1.7 \% \mathrm{~Pb}$, $3.6 \% \mathrm{Zn}, 1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

This report summarizes the results of two diamond drill holes, RG394 and RG395, drilled in May and June of 1991 as part of an ongoing exploration program which fulfills the assessment requirements necessary to maintain the mineral claims in good standing.

LOCATION AND ACCESS

The Samatosum property is located approximately 100 km northeast of Kamloops and is easily accessible by highways and good quality gravel roads. Forest service access roads cross near the centre of the property and provide routes from both the west and southeast.

The town of Barriere lies 30 km to the west on the Yellowhead highway, and can provide all necessary services. Alternatively, the town of Chase is 45 km to the south of the property, on the Trans-Canada highway.

PHYSIOGRAPHY AND VEGETATION

The climate in the region is moderate with temperatures ranging from extremes of -25 degrees Celsius in winter to 30 degrees Celsius in the summer. Precipitation is semi-arid to moderate, with a snow free period from May to November.

The claim area lies within the Adams Plateau in an area typified by well forested, rolling mountainous terrain. Elevations on the property range from approximately 1100 m at Johnson Lake to 1400 m at the peak of Samatosum Mountain.

Vegetation on the property consists of stands of balsam, fir, pine, cottonwood, birch and cedar. The claim area has been extensively clear-cut by logging companies, and is currently part of the summer range for cattle from ranches in the Sinmax Valley.

PROPERTY

Ownership of the Sam Group of claims is part of a joint venture agreement with Rea Gold Corporation (Minnova 70\%, Rea Gold 30%), wherein Minnova Inc. is the operator. The claim group consists of a Mining Lease, and eleven claims as shown below in

Table 1 and in Figure 2. The drilling mentioned herein was conducted solely on the mining lease.

TABLE 1. SAM GROUP OF CLAIMS

CLAIM	REC \#	UNITS	CURRENT EXP. DATE	NEW EXP. DATE
HARRISON 1	218151	8	$09 / 06 / 00$	$09 / 06 / 2001$
HN-1	217137	20	$10 / 07 / 94$	$10 / 07 / 2001$
HN-12 Fr.	217229	1	$11 / 22 / 00$	$11 / 22 / 2001$
HN-17 Fr.	217230	1	$11 / 22 / 00$	$11 / 22 / 2001$
HN-19 Fr.	217231	1	$11 / 22 / 00$	$11 / 22 / 2001$
LEO 1	218121	4	$07 / 28 / 00$	$07 / 28 / 2001$
RYAN 3 Fr.	218128	1	$08 / 12 / 00$	$08 / 12 / 2001$
RYAN 1	218129	1	$08 / 12 / 00$	$08 / 12 / 2001$
RYAN 2	218130	1	$08 / 12 / 00$	$08 / 12 / 2001$
KIM Fr.	218131	1	$08 / 12 / 00$	$08 / 12 / 2001$
WG F Fr.	217255	1	$12 / 22 / 98$	$12 / 22 / 2001$
Mine Lease	$\# 41$	1^{*}	$10 / 03 / 2019$	$(30 \mathrm{Yr} .1 e a s e)$

*Considered one unit for grouping purposes.

HISTORY

The Adams Plateau on the west side of Adams Lake has received intermittant exploration activity since the 1920's, due to the presence of several large rusty rock exposures and numerous small base and precious metal occurences. Only the Homestake Mine, in the Sinmax valley, reported minor production prior to the discoveries on Mt. Samatosum.

In 1983, Mr. Al Hilton of Kamloops located and staked a hematitic gossan that had been recently uncovered by active logging on the NW flank of Mt. Samatosum. He had been drawn to the area by anomalous soil and silt samples collected during a two year prospecting program utilizing a field geochemical kit. Trenching revealed the presence of gold-bearing massive sulphides, which would become known as the Discovery Zone. The Sam property was optioned by Rea Gold Corporation who in turn optioned it to Minnova Inc. (then named Corporation Falconbridge Copper). Exploration drilling outlined a total of three small, metallurgically difficult massive sulphide pods containing significant amounts of gold. Subeconomic reserves were estimated at approximately 150,000 tonnes of of arsenical mineralization grading $7.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 85.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, $0.6 \% \mathrm{Cu}, 2.5 \% \mathrm{~Pb}$, and $2.6 \% \mathrm{Zn}$. Exploration of other targets on the property by Minnova Inc., utilizing geology, geochemistry, and geophysics led to the 1986 discovery of the "Sam Deposit" by diamond drilling. Geological reserves were calculated at 634,984 tonnes containing $1035 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.2 \% \mathrm{Cu}, 1.7 \% \mathrm{~Pb}, 3.6 \%$

Zn. Production began in June, 1989, from a small open pit at a rate of about 450 tonnes per day.

Exploration, primarily in the form of diamond drilling, has subsequently been an ongoing activity on the mine group and surrounding areas.

REGIONAL GEOLOGY

The area is comprised of structurally complex, low grade metamorphic rocks which lie along the western margin of the Omineca Belt. The package is flanked to the east by the high-grade metamorphic rocks of the Shuswap Complex and to the west by rocks of the Intermontaine Belt. Included within the area is an assemblage of metasedimentary and metavolcanic of the Paleozoic (Cambrian to Mississippian) Eagle Bay Assemblage. This assemblage has undergone several phases of deformation involving folding and thrust faulting which has produced a moderate to strong foliation in most of the units. Deformation generally increases eastward towards the margin of the Shuswap Complex. To the north the Eagle Bay Assemblage is intruded by granite and quartz monzonite of the Cretaceous Baldy Batholith.

PROPERTY GEOLOGY

The Eagle Bay Assemblage underlying the Sam claim group is comprised of northwest trending, northeast dipping sequences of: mafic volcanics, mixed cherty argillaceous sediments (including debris flows and exhalative horizons), black distal turbidites, and minor amounts of felsic volcanics and recrystallized limestone. The rocks display a strong NW regional axial planar foliation (dip 55° E) with tight overturned folding and accompanying thrust faulting. The Samatosum sulphide deposit sits at a particular horizon in cherty mixed sediments near a major volcanic-sedimentary break. This "Sam Horizon", although highly deformed, can be traced across the entire property. The Discovery Zone ("Rea Deposit") sits in a similiar package of rocks some 500 metres to the southwest of the Sam Deposit and can also be traced out across the property.
The two deposits are mineralogically very different with Sam dominated by coarse grained tetrahedrite, sphalerite, galena, and chalcopyrite associated with quartz veining while Rea is dominated by fine grained arsenopyrite, pyrite, sphalerite, galena, quartz and barite in what appears to be a volcanogenic massive sulphide deposit. The relationship between the two deposits remains uncertain.

DIAMOND DRILLING

In late May and early June of 1991 two diamond drill holes were completed as part of the ongoing exploration program in order to probe favourable stratigraphy in previously untested areas. The locations of RG394 and RG395 are shown in Figure 3. The detailled logs for the holes are reproduced in Appendix B.

RESULTS OF DDH RG394

Hole RG394 was drilled on section $93+00 \mathrm{~W}$ in order to test a possible corridor of mineralization located to the southeast of the SAM orebody at 1300 meters elevation.

The hole collared in a thick sequence of chloritized to carbonatized mafic volcaniclastic rocks which contains large zones of brittle fault brecciation. At the 167.5 m mark these volcanics are in sharp contact with a narrow interval of intensely altered sediments. Initially the sediments consist of a healed and silicified fragmental argillite which is banded by intense yellow sericite alteration. This unit is in turn in sharp contact with a pyritiferous grey sericite schist in which fault gouge and relict fragmental textures are common. Between 181-182.2m the hole a intersected silcified zone containing 60% cataclastic pyrite, 3% sphalerite, and trace amounts of galena, chalcopyrite and tetrahedrite which returned assays of $1.16 \% \mathrm{Cu}, 2.37 \% \mathrm{Zn}, 3.99 \% \mathrm{~Pb}$, $58.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, and $.56 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. The hole next intersected a variably silicified and carbonatized mixed sequence consisting of pyritiferous grey sericite schist, argillite and minor volcaniclastic rocks. Within this interval, (between 206.8208.4 m), another less well mineralized siliceous sulphide zone occurs which assayed $.26 \% \mathrm{Cu}, 2.18 \% \mathrm{Zn}, 1.09 \% \mathrm{~Pb}, 15.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, and $0.38 \mathrm{~g} / \mathrm{t}$ Au. The interval containing the zones of pyritiferous grey sericite schist is interpreted to be the Sam horizon. At 220.2 m the hole encountered ribbon cherts which graded into silicified argillite with minor chert at 224.5 m . The laminations within the cherts exhibit strong chaotic folding. Between 235.7241.8 m and $362.9-387.4 \mathrm{~m}$ the hole intersected carbonatized and locally sericitized mafic volcanics in which alteration increases with depth. Interstial to these two zones is a mixed pile of primarily distal sediments which are locally weakly silicified, carbonatized, or sericitized. The hole ended at 387.4 meters.

RESULTS OF DDH RG395

RG395 tested an undrilled zone located 350 m below surface on section $95+50 \mathrm{~W}$. The target is beneath and to the south-east of the orebody.

This hole collared in a thick sequence of chloritic to calcareous mafic volcaniclastic rocks. At 327.9 m the mafic volcanics are in contact with a thinly bedded sequence of highly deformed and brecciated sericitized tuff and silicified argillite. One 20 cm wide quartz vein in this interval returned assays of $.08 \%$

$\mathrm{Cu}, 11.45 \% \mathrm{Zn}, 2.10 \% \mathrm{~Pb}, 12.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, and . $10 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Between 361.4-411.3m the hole intersect-ed a similar sequence consisting of intensely carbonatized mafic volcanics followed by interbedded tuffs and argillites. The above unit is in fault contact with an interval of silicified argillite and minor chert. The latter unit is cut by deformed white to grey quartz veins carrying an average of 7% pyrite, 2% sphalerite, and trace amounts of galena and chalcopyrite. At 445.6 m the hole intersected a mixed sequence of laminated argillite, silstone, minor chert, and tuff. The rocks of this unit are variably silicified and carbonatized. Mineralized quartz veinlets carry an average of 6% pyrite, 1% sphalerite, and <1\% galena and chalcopyrite. More carbonatized mafic volcaniclastic rocks containing a possible broad open fold nose followed. This unit ended in a three meter wide silicified fault zone in which carbonate, sericite and talc are common. The fault zone gave way to a weakly altered mafic lapilli tuff at 519 m . The hole ended at 614.7 in a sequence of silicified argillites and tuff(?) similar to those seen at the top of the hole.

CONCLUSIONS

Neither RG394 nor RG395 encountered economic mineralization, but they did intersect significant polymetallic grades over narrow widths associated with quartz veining and silicification. A moderately mineralized zone within $R G 394$ was recognized as belonging to the Sam horizon despite the presence of intense deformation. The equilavent horizon within RG395 was only poorly mineralized.

Sufficient evidence exists to suggest that a hydrothermal system was once active and extended to include the vicinity of the holes. Exhalative rocks were scarce, however, and are represented only by minor ribbon cherts, and thin pyrite laminae, indicative of a distal enviroment.

It should be noted that the holes discussed above are part of an ongoing drill program which is expected to continue throughout the life of the Samatosum mine. It is hoped that this program will enable trends to be delineated, which could lead to the discovery of new centres of mineralization, and hopefully add to the reserves currently being mined on the property.

APPENDIX A

STATEMENT OF COSTS

DIAMOND DRILLING

Direct Drilling Costs (1002.4m @ 52.60/m)
(Frontier Drilling Ltd.)............... \$52,729.10
ANALYTICAL COSTS
Min-En Labs, North Vancouver, B.C:
(122 Assays @ $\$ 15.50 /$ sample)........... $\$ 1,891.00$

PERSONNEL

A. Hill - Project Geologist		
7 days @ 350/day.	\$2,450.00	
2 days @ \$350/day		\$700.00
C. Nagati - Geologist		
9 days @ \$250/day.	\$2,250.00	
R. Muzyka - Field Technician		
8 days @ \$150/day.	\$1,200.00	
1 day @ \$150/day.		\$150.00
S. Fraser - Field Technician		
6 days @ \$150/day.	\$900.00	
C. Noble - Data Entry Technician		
1 day @ \$120/day.		\$120.00

LOGISTICS

$$
\begin{aligned}
& \text { Vehicles: } 31 \text { days @ \$50/day............. \$1,550.00 } \\
& 1 \text { day @ \$50/day. } \\
& \$ 50.00 \\
& \text { Food \& Accomodation: } 31 \text { days @ \$40/day. \$1,160.00 } \\
& 1 \text { day @ \$40/day... } \\
& \$ 40.00
\end{aligned}
$$

MISCELLANEOUS COSTS

Drafting, computer, supplies........... \$250.00
Core rack supplies \& Reclamation.......
A) TOTAL BEFORE JUL 28/91: \$64,430.10
B) TOTAL AFTER JUL 28/91:
$\$ 1,310.00$
GRAND TOTAL (A+B) : $\$ 65,740.10$

APPENDIX B
DIAMOND DRILL LOGS AND ANALYTICAL RESULTS

PURPOSE: 9300 w section, hole p-15. (as laid out with topofil, AH91)
dIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Corments
90.50	-	-75.01	ACID	OK		-	-	-	-	-	
104.80	-	-74.01	ACID	ok		-	-	-	-	-	
187.70	-	$0^{\circ} 0^{1}$	ACID	NO	POOR ETCH	-	-	-	-	-	
230.40	-	$0^{\circ} 0{ }^{1}$	ACID	No	POOR ETCH	-	-	-	-	-	
271.20	-	$-71^{\circ} 01$	ACID	OK		-	-	-	-	-	
321.50	-	-690. 0^{1}	ACID	OK		-	-	-	-	-	
355.50	-	$-68^{\circ} 0^{1}$	ACID	OK		-	-	-	-	-	
386.20	-	$-66^{\circ} 01$	ACID	OK		-	-	-	-	-	
-			-	-		-	-	-	-	-	
-		-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	$:$	-	-	-		-	-	-	-	-	
-	-	.	-			-	-		$:$	$:$	
-	-	-	-	-		-	-	.	-	-	
	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	- -	-	-	-	
-	-	-	-	-		$:$	-	-	\cdot	\because	
	-	\cdot		-		-	-	-	-	-	
-	-	\because	-	-		-	-	-	-	-	

HOLE NUM	ER: RG394	minnova inc. DRILL HOLE RECORD				DATE: 25-September-1991
$\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|l\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	ALTERATION	mineralization	REMARKS
$\begin{array}{r} 224.50 \\ 10 \\ 235.70 \end{array}$	$\begin{aligned} & \text { «SIL ARG/ } \\ & \text { CHT» } \end{aligned}$	Black and white. Very black argillite with grey ribbon chert, laminations contorted. otz. veining is white and barren with black stylolites. Ratios arg: cht: qv are 2:5:1. Strong fabric avg.	65	silicification is moderate in arg. Minor dol also in veins.	2% py as thin bands and fracture fillings.	
$\begin{array}{r} 235.70 \\ 10 \\ 241.80 \end{array}$	¢00L maf vCLASTICS?"	"Dolomitized Mafic Volconiclastics?" Buff and grey. Upper contact broken, into interval of buff sericitic rock with grey dolomitic lenses. Rock has banded appearance, with no relict textures. Lower contact is conformable and sharp.	70	Strong carbonatization, brown ser, grey Fe-dol, trace fuchsite.	2\% dissem py.	
$\begin{array}{r} 241.80 \\ 10 \\ 362.90 \end{array}$	«ARG/CHT/ TUFF BX"	Black, grey, and pale green respectively. Long sequence of laminated to thinly bedded argillite, with lesser chert, and thin beds of pale green tuff(?). Fabric is strong \& varies from foliation to spaced cleavage $+1-10$ degs. Proportion of dol. mafics increases from 10\% to 40% at 325.5 m , and looks like a volcaniclastic wacke. Gradational lower contact.	65	Silicification is moderate in arg, dol is pervasive in tuff. White adv's common and mostly deformed, and barren, both crosscutting and conformable. \{268.7-269.3\} «Flt. gouge"	Only trace to 1% pyrite as dissem. assoc. with veining.	Highly contorted, tectonically brecciated, and strained. Fault intensity is centered around $\$ 239.4-261.3$. "Ductile thrust?" and weakens downhole.
$\begin{array}{r} 362.90 \\ \text { T0 } \\ 387.40 \end{array}$	«ALT MAFICS"	Green, white and grey. Consistantley textured green mafics with pervasive carbonate. However, no brown sericte is developed. Widely spaced qtzcarb veining is typical of unaltered Sam mafics. Internal volcanic textures destroyed. Weak foliation.... END OF HOLE.	60	Evenly spotted texture with porphyroblastic carbonate (fe-dol) giving rock a "pseudogabbroic" appearance. Chtorite is abundant also.	Trace diss. py only.	"Middle Mafics" At 386.9 the lithology changes to lapilli tuff from a probable massive flow.

PURPOSE: PROPOSED HOLE P-18, TEST SAM HORIZON 150M UPSTRIKERG 376.

DIRECTIONAL DATA: (cd's as laid out by survey)

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments
75.20	-	-87* 0^{1}	ACID	OK		-	-	-	-	-	
124.00	-	-860 0°	ACID	OK		-	-	-	-	-	
178.90	-	$-83^{\circ} 0^{\prime}$	ACID	OK		-	-	-	-	-	
228.60	-	$-80^{\circ} 0^{\prime \prime}$	ACID	OK		-	-	-	-	-	
270.40	-	-760 0^{\prime}	ACID	OK		-	-	-	-	-	
316.10	-	-890 0^{1}	ACID		STUMPER?	-	-	-	-	-	
346.60	-	-74* 0^{1}	ACID	OK		-	-	-	-	-	
386.20	-	-720 0^{\prime}	ACID	OK		-	\bullet	-	-	-	
465.40	-	-70 0^{\prime}	ACID	OK		-	-	-	-	-	
495.90	-	$-70^{\circ} 0^{\prime}$	ACID	OK		-	-	-	-	\cdot	
533.70	-	-70 $0^{\circ} 0^{\prime}$	ACID	OK		-	-	-	-	-	
556.90	-	$-69^{\circ} 0^{1}$	ACID	OK		-	-	-		-	
303.90	$211^{\circ} 0^{\prime}$	-750 0^{\prime}	MULTISHOT	OK	SPERRY-SUN	-	-	-	-	-	
553.80	$209^{\circ} 0^{\circ}$	$-70^{\circ} 0^{1}$	MULTISHOT	OK	SPERRY-SUN	-	-	-	-	-	
-	-	-	-			$:$	\because	$:$	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	\cdot		-	-	\cdot	-	-	
-	-	-	-	-		-	-	\cdot	-	-	
-	-	$:$	-	-	-	\div	\because	\because	-	-	
-	-	-	-	-		-	-	-	-	-	
\cdot	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-			-	

hole num	ER: RG395	minnova inc. DRILL HOLE RECORD				DATE: 25-September-1991	
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	alteration	Mineralization	REMARKS	
$\begin{array}{r} 0.00 \\ 10 \\ 15.80 \end{array}$	«CASING"	Casing through overburden.					
$\begin{array}{r} 15.80 \\ 10 \\ 327.90 \end{array}$	«MAF VOLC"	Dark to light green. Core is badly broken from \|15.8-24.6	"FIt Bx" and bleached out from 126.7-32.0 «Carb Flt." Otherwise a dark green chloritic greenstone, cut by $10-15 \%$ irregular atzcalcite veinlets. Moderate fOLIATION a First lapilli seen at 122 m , but still mostly massive volcanics. Relatively fresh and green, with dark spots, and white veinlets and segregations through to 307.5 m . From \{237.6-240.0 «Rdv, fit Bx" break the monotony. Lower contact is sharp and conformable at angle of Competant core.	50 65	Pervasive calcareous and chloritic except around faults as noted, where ferrodolomitization and minor diss. pyrite present, along with trace fuchsite and talc. Patchy weak fe-dol. locally throughout 65.0-90.0m. Carbonatization, centered around lapilli, starts gradationally at 319.0 m and increases intensity along with fabric until contact. \{319.0-327.9\} «ol Alt"	2-3\% disseminated pyrite except for a fairly rich dol ($+/$ - qtz.) vein. \{54.5-54.7\| 《3\% gn, $2 \% \mathrm{sp}, \mathrm{py}, \mathrm{cp}>$ with spectacular pegmatitic "spider web" textures. Minor disseminated pyrite only except for a mineralized dol vein from \{322.8-323.1\} «2\% sp, gn; qdv»	
$\begin{array}{r} 327.90 \\ 10 \\ 361.40 \end{array}$	«SIL ARG/ tuff IECT»	Black and pate green. Apparently a part of the mafic pile (or very well annealed) is a competant, black argillaceous unit, with grey silty \& cherty clasts and deformed laminations. Very strong foliation a Parallel qtz veinlets (10\%) and axial cleavage to small scale folds. Clast are angular or boudin shaped. Lower contact is interbanded (bedded?) \& marks last argillite seen.	55	Silicification related to veinlets, with minor pale green to yellow sericite development in tuff layers which comprise $10-30 \%$ of unit increasing down hole.	Trace disseminated pyrite only except ofr mineralized qtz-dol veinlets: \{329.1-329.3\| "qdv" with 10\% sp in a medium grained pyritic mass, $3 \% \mathrm{gn}$, tr cp . Also at $344.6-344.8 \mathrm{~m} \& 347.1-347.7 \mathrm{~m}$ and 353.1-354.1m. These veinlets are $1-10 \mathrm{~cm}$ thick \& although often parallel, are deformed. Most were sampled.		
$\begin{array}{r} 361.40 \\ 10 \\ 395.30 \end{array}$	«DOL MAF»	Grey and mustard yellow. Grey dolomite in medium to coarse grained patches separated by sericite (15\%) and lesser talc or fuchsite. Irregular fabric swings from 30-70 degs. (Does this mean that alt. is post penetrative deformation?). Lower contact is also interbanded and gradational and marks reappearance of blk argillaceous component.		Very intense ferrodolomitization and mustard yellow to buff sericitization. Becomes darker buff and dark grey downhole.	3-4\% disseminated pyrite only until 390 m when sulphide rich qtz-carb veins become common. \{390.7-395.3\} «7\% py, 2\% sp, tr gn, cp»		
$\begin{array}{r} 395.30 \\ \text { TO } \\ 411.30 \end{array}$	«ARG/SILT tuff tect"	Black, yellow grey, green. Mixed lithology tectonic breccia, with a strong stretching fabric at Possible "heterolithic fragmental" from \{395.3-397.0\| shet frag?" Mainly an argillaceous matrix, with siliceous clasts, although there are short intervals of yellow sericite or fuchsite. Overall a very "ratty" irregular texture, very disturbed. Minor gouge \& friable breccia throughout but most intense at	55	Patchy silicification associated with $1-10 \mathrm{~cm}$ qtz veinlets and also patchy yellow or green sericte apparently host rock dependant. 1410.6-411.3\| "fuch. fault gouge"	3% py as wispy disseminations and in cataclysed siliceous patches $\&$ veinlets Irace sphalerite associated with py. Very rare cp at 397.4 m .	.	

HOLE NUMBER: RG395			minnova inc. DRILL HOLE RECORD			DATE: 25-September-1991
$\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$	ROCK TYPE	texture and structure	$\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$	ALteration	mineralization	REMARKS
		bottom contact.				
$\begin{array}{r} 411.30 \\ 70 \\ 445.60 \end{array}$	$\begin{aligned} & \text { «SIL ARG/ } \\ & \text { CHT? } \end{aligned}$	8lack, white, and grey. Very hard and silicified interval, cut by white milky quartz veins up to 10 cm , and by grey quartz stockwork, crosscutting \& deformed. Clotty fine to coarse grained pyrite \& sphaterite are disseminated and fracture filling, as well as in veins. Interval textures destroyed, with only minor contorted laminations remaining. Fabric ranges from $40-90$ degs. to core axis.		Pervasive, vein controlled silicification. Some siltstone now is cherty, perhaps some primary chert. Black, graphitic "stylolites" common throughout. $\left\{\begin{array}{l} \text { 416.2-416.5 } \\ 434.8-436.8 \\ \|443.4-444.6\| \text { "cht? "15\%py," } 5 \% \text { sp, 2\%gn in qus" } \end{array}\right.$ $\text { Minor fault breccia over last } 5 \mathrm{~m} \text {. }$	Patchy veinlet related sulphides. 1411.3-445.6 《7\% py, 2\% sp, tr g \& c" Sphalerite is generally brown, medium to coarse grained and within veins with trace galena. Pyirte is more widespread in veins and in wallrock dissem and patches.	Cont inuously sampled for ICP/Geochem analysis.
$\begin{array}{r} 445.60 \\ 10 \\ 501.00 \end{array}$	«MIXED SEDS tuFf/ tect"	Black, grey, and green. Top contact friable fault breccia for 60 cm with silicified and dolomitized fragments containing disseminated pyrite (10\%). Lithologically mixed and altered, apparently laminated argillite/siltstone ($+/-$ cht?) with thicker $0.1-1.0 \mathrm{~m}$ scal interbeds of heavily carbonatized \& fuchsitic tuff? or volcaniclastic wacke. The laminated portions are contorted, disrupted, and silified. Spaced cleavage at 456 m Fragmental, tectonic bx locally. Unit becomes thickly bedded coarse wacke(?) downhole, with only patchy argillaceous material. At 490 m the black argillite is cut by fractures, now deformed and filled in with qtz-carb, which display strongly pyritized wallrock alteration envelopes. (see specimen). Gradational lower contact.	60	Silicification predominates, with dol'n host rock dependant eg: $\{451.0-451.9 \mid$ «fuch." Sericite (yellow and brown) in patches appears around 454 m with in mafics, and minor grey sericite around 458m in argillaceous portions. Gradationally (ca 477m) downhole the rock becomes more even textured \& dark grey; probably a coarse wacke with minor argillaceous component, now pervasively ferrodolomitized. Very little grey sericite developed, just enough to give broken surfaces a sheen.	Coarse, caraclysed, pyrite grains in siliceous seams and veins, with minor sphalerite and traces of galena. \{445.6-501.0\| $\times 6 \% \mathrm{py}, 1 \% \mathrm{sp}$, tr gn, cp" Particular samples of interest include: 446.2-446.7m: 3\% cpy. 463.3-369.4m: 10\% py, 3\% sp. From 477m down the richer basemetal bearing deformed veinlets are less common and wider spaced ($2-3 \mathrm{~m}$ apart) and only $1-2 \mathrm{~cm}$ thick. Very fine grained py disseminations increase inversely 499-501m: 15% very fine grained pyrite.	Very reactive unit, possible due to porosity, and primary carbonate component(?) The alteration corona' looks like "Mut". This specimen given to J. Clarke for petrography.
$\begin{array}{r} 501.00 \\ \text { TO } \\ 516.00 \end{array}$	«DOL MAF?"	Brown to grey. Gradational contact expressed mainly by the increase in buff to brown sericite present. Still a highly altered, dense dolomitic rock with irregular fabric. Possible fold nose at 503 m , broad and open.		Pervasive, strong ferrodolomitization with accompanying brown sericite and pyrite. Also cut by uncommon, irregular white qtz-dol units.	5-10\% disseminated pyrite throughout.	
$\begin{array}{r} 516.00 \\ \text { TO } \\ 519.00 \end{array}$	«fault"	Brown and white. Hosted by a strong talc-sericite schist which way to fault gouge and breccia from 516.5-517.4m. Milky silicification from 517.4 to 518 m . Angles varied, but much subparallel to core axis.		Strong dolomitization cut by milky white quartz veining (20\%). Associated sericite and talc common.	Only 5% pyrite as very fine grained disseminations in wallrock.	

HOLE NUM	ER: RG395	minnova inc. DRILL HOLE RECORD				DATE: 25-September-1991
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	Alteration	mineralization	REMARKS
$\begin{array}{r} 519.00 \\ 563.40 \end{array}$	\&MAF LAP TUFF»	Pale green to buff and olive. Easily recognizable lapilli textures, although rock quite bleached. Rock has no foliation, \& lapilli are not flattened but are lighter colour than matrix. Chlorite common in matrix. Deformed 1 cm qtz-carb veintets comprise about 10\% of interval. Lower contact sharp with fault gouge.		Weak fe-dol, centered about lapilli. from $\{521.0-521.8 \mid$ uqdv» which is white and barren.	2-3\% disseminated pyrite only. One speck of galena at 520 m in siliceous patch.	Typical "Sam Mafics" occuring where 'Middle Mafics" usually appear.
$\begin{array}{r} 563.40 \\ \text { TO } \\ 614.70 \end{array}$	«SIL ARG/ TUFF?»	Black and white. Friable fault gouge and breccia at top of interval, with black argillite and qtz vein fragments. $1563.4-565.2$ \& α lt." Unit is comprised of about 20% white xaline quartz veins, highly deformed along with finely laminated argillite/siltstone. Most common cleavage direction: with bedding at all orientations. From $\{586-602.5 \mid$ «fold nose?" where bread open folds with bedding along axis and common q.v.'s. END OF HOLE	55	Intense vein related silicification becomes pervasive in places. The rock has a pale greenish tinge in siltier portions \& around veining esp. at 593598m and from 608.2-612m perhapse due to minor tuffaceous component. Very minor buff sericite also in the green portions.	Only a few coarse euhedra of pyrite in quartz-dol veining around $594-595 \mathrm{~m}$.	In places resembles HH seds, but more likely correlatable with the "SIL ARG/ IUFF TECTONITE" near the top of the hote.

APPENDIX C

STATEMENT OF QUALIFICATIONS

STATEMENT OF OUALIFICATIONS

I, Alan R. Hill hereby certify that:

1) I hold a Bachelor of Science degree (Geology Major) obtained in 1984 from the University of Western Ontario, in London.
2) I have practised my profession in minerals exploration continuously since graduation.
3) I have personally supervised the work reported herein, in the field, and have based my recommendations on that work, my knowledge of the area, and previous experience in the area.

Alan R. Hill, B.Sc. Vancouver, B.C.

Fast action extinguishes car fire

ANN PIPER

Prompt and effective action on the part of a number of passersby stopped a car fire on Barriere Lakes Road

Aug. 7 before it could spread to underbrush and timber in its immediate area.

The excitement began a few minutes before 11 a.m.,
that day, when a 16 -year-old Barriere-area driver lost control of the 1989 Eagle Vista his was driving, police reported.

Eastbound, the car went into the right-hand ditch and caught fire. Neither the driver nor a 15 -year-old passenger was injured in the incident.

Ray left
Others arriving on the scene attacked the blaze with fire extinguishers and other tools before Barriere resident Wally Welz passed by in his Tri-Service septic tank pumper truck. Welz proceeded to the Barriere Landfill site, disposed of his cargo, filled his tank with water from a nearby source and returned to quell the blaze.

Police report the car is a total write-off, but after completing their investigation of the matter, Barriere RCMP indicate no charges will be laid.

PROVINCE OF BRITISH COLUMBIA

MINISTRY OF
ENERGY, MINES ANO PETROLEUM RESOURCES

MINERAL TITLES REFERENCE

MAP 092P09E

U.T.M. ZONE 10

LAST MAP UPDATE: 1995 NOV 28

ORIGINAL PRODUCED AT TY, 31680 $500 \quad 0 \quad 500100015002000$ ADMINISTRATIVE AREAS MINING DIVISIONS: KAMLOOPS

LAND DISTRICTS:

ALIENATIONS
\qquad

