

PROPERTY FILE

PROPERTY FILE

Vancouver, B. C. March 12, 1965.
H. R. Morris
Geologist.
COMTENTS
Map RD-64-1 LOCATION MAP OF RUDDOCK CREEK PROPERTY A
Page
Map RD-64-2 RUDDOCK CREEK CLAIMS B
INTROLUCTION
SUMMARY OF 1963 RESULTS 1
LOCATION 3
ACCESS 4
HISTORY OF THE PROJECT 5
GENERAL ACCOUNT OF 1963 WORK 7
COMMUNICATIONS 9
PROGRESS OF ED DRILLING 11
RESULTS OF ED DRILLING 13
RESULTS OF GEOLOGICAL MAPPING 15
DESCRIPTION OF MAIN SHOWINGS 18
' F ' Showing 21
'G' Showings 22
'M' Showings 23
'T' Showings 24
'U' Showings 25
' Q ', ' R ' and ' V ' Showings (West End) 26
METASEDIMENTS ASSOCIATED WITH MINERALIZATION 27
STRUCTURE OF THE ORE-BEARING LAYERS 31SUMAARY FOR 1963 AND PROPOSALS FOR 1965 (EXPENDITURES)NOTES ON LOCATION OF DRILL CORE
DRILL LOGS: ED \#1 to ED \#8
$\mathrm{E}-1$ to E-37 (E-11 missing)
M-1 to M-15
Q-1 to Q-13
$\mathrm{R}-1$ to $\mathrm{R}-3$
T-1 to T-8
U-1 to U-3
V-1
PHOTOGRAPHS \#1 to \#30
MAPS RD-64-3 to RD-64-6) In Accompanying Folder -SECTIONS RD-64-7 to RD-64-19)MAPS RD-64-20 to RD-64-25) See list on following page.

List of Maps in Folder to accompany report on Ruddock Creek, 1961-1963:

RD-64-3	-	Grological \& Topographical - East sheet	$1^{\prime \prime}=400^{\prime}$
RD-64-4	-	" - West sheet	$1^{\prime \prime}$ - 400°
RD-64-5	-	Longitudinal Section - 2 to U	$1^{\prime \prime}=400^{\prime}$
RD-64-6	-	Geology E showing	$1^{\prime \prime}=40^{\prime}$
RD-64-7	-	E Sections DS 87 E	$1^{\prime \prime}=40^{\prime}$
RD-64-8	-	DS 00	$1^{\prime \prime}=40^{\prime}$
RD-64-9	-	DS 150 w	$1^{\prime \prime}=40^{\prime}$
RIL-64-10	-	OS 400 w	$1^{\prime \prime}=40^{\circ}$
RD-64-11	-	DS 500 W	$1^{\prime \prime}=40^{\prime}$
RD-64-12	-	Section S. 0	$2^{\prime \prime}=40^{\prime}$
RD-64-13	-	" S. 1	$2^{\prime \prime}=40^{\prime}$
R0-64-14	-	\% 5.2	$1^{\prime \prime}=40^{\circ}$
RD-64-15	-	* S. 3	$1^{\prime \prime}=40^{\prime}$
RD-64-16	-	" S. 4	$i^{\prime \prime}=40^{\prime}$
RD-64-17	-	" 5. 5	$1^{\prime \prime}=40^{\prime}$
RD-64-18	-	" S. 6	$1^{\prime \prime}=40^{\prime}$
RD-64-19	-	* S. 1800	$1^{\prime \prime}=40^{\prime}$
RD-64-20	-	E Zone Sub Surface Structure	$1^{\prime \prime}=100^{\prime}$
RD-64-21	-	M Showings and Drill Sections	$1^{\prime \prime}=40^{\prime}$
RD-64-22	-	Lower ' T ' Showing Geology	$1^{\prime \prime}=40^{\prime}$
RD-64-23	-	Uppar 'T' Showing Geology	$1^{\prime \prime}=40^{\prime}$
RD-64-24	-	Q and R Showings and DIf Sections	$1^{\prime \prime}=40^{\prime}$
RD-64-25	-	U Showings Geology	$1^{\prime \prime}=40^{\prime}$

REPCRT ON
 RUDDOCK CREEK LEAD-ZINC PROPERTY
 1961 to 1963

INTRODUCTION

The description of the 1963 summer field work contalned in these pages is intended to supplement my earlier progress reports on the property. Where appropriate a suming-up is made of data gathered since 1960 on each of the lead-zinc showings, and on the general area. An account is also given of methods of work and some of the difficulties encountered, as an aid to future planning. SUMPAARY OF 1963 RESULTS

Seventeen men drilled, trenched, surveyed and mapped geology during the four-month season. Over 12,000 feet of drilling were completed In this time, at three camps, supported by helicopter chartered from Okanagan Hercopters Ltd. in Revelstoke. Total cost (for the full year) was about $\$ 140,000$.

The attempt to prove the down-plunge continuation of the ' E ' Zone ore, at a distance of 1000 to 4000 feet from outcrop was on the whole unsuccessful. Six diamond-drill holes averaging 1530 feet in depth were drllled to this end. A post-ore fault (named the No. 1 fault) cutting across the plunge of the ore structure at 600 to 1000 feet from ore outcrop, was found to have moved the down-plunge block $600-800$ feet deeper than anticipated. Lougrade mineralization in the down-thrown block wes found at depth near the limit of the drilling apparatus used, in three borcholes collared at an elevation of 7800 feet a.s.1. The high-grade ore of the ore-bearing fold structure is belleved to have been missed by three drillholes, due partly to unexpectedly great deviation of
of the holes during the drilling. The evidence appears to support, rather than cast doubt on, the present working hypothesis of a tight fold structure formed of stratigraphically controlled ore material continuing at depth through the property. Further deep driliing is recomended. (See proposals dated January 7, 1965.) (See Map RD-64-5)

Going underground, by aditing from a point between the Min Camp and Light Lake, at 6000 ft . elevation, involves 3000 ft . of rock tunnelling, and seems from preliminary estimates to be equivalent in cost to the $22,000 \mathrm{ft}$. of deep drilling contained in my Jan. 7, 1965 proposal (appended to this report), i.e. $\$ 200,000$ to $\$ 240,000$.

On the west end showings, designated Q, R, U and V, seventeen shallow holes were drilled and rock trenches were cut, at elevations of 4000 to 6500 feet. The continuity was further established of the mineralization occurring in certain strata in the metamorphosed series of sedimentary rocks, between sheets of later intruded pegmatite. No ore concentrations of an economic interest comparable to the " E " were disclosed at the west and of the property.

The area of the property in which the sphalerite-galena showings appear is about $2 \frac{1}{2}$ miles east to west by $1 \frac{1}{2}$ miles north to south.

Assessment requirements on 64 of the claims have been satisfied up to the years 1969 to 1988. On the remining 30 claims bordering the property work was due in the years 1964 to 1967.

It is recommended that the company persevere with deep driliing, which could indicate, if the main ore zone persists, between ten and twenty million tons of ore grading over 10% combined lead and zinc.

LOCATION
The Ruddock Creek property consists of 94 mineral claims located in mountainous country (the northern part of the Monashee Range) 65 miles north of Revelstoke, B.C. The property is near the watershed separating Ruddock Creek - a tributary of the Columbia River, 10 miles eastward - and the eastern headwaters of Oliver Creek, which flows north and west to join the Adams River at Tumtum Lake. All but a small fraction of the claims are in fact in the Oliver Creek drainage area. Elevations lie in the range from 3100 feet in Oliver Creek at the west end of the property to 9400 feet in the northeast part, on snow-topped mountain named Gordon Horne West. The highest peak of the Gordon Horne group, named Don Horne or Gordon Horne on government maps, is $3 \frac{1}{2}$ miles east of the Ruddock main camp.

The major part of the property is above the 6500 ft . tree 1ine, and here, except for heather and stunted shrubs between 6500 and 7500 ft. , the ground is either berren rock or is covered by permanent reve snow, small receding glaciers, or glacial moraine and talus. Rock exposure on recently glaciated surfaces is of course exeellent and has allowed detailed mapping of the higher showings. Clalms at lower elevations are well tiabered with cedar, spruce and white pine, with alder on snowsilde areas. On steep timbered slopes mapping is siow, arduous and confined to small loce 1 cllffs and steep gullies.

Water supply, from streams fed by glacial and ntve melt-weters, varies according to elevation and time of year, but has been found generally to be ample for exploration work in the summer and fall. The proposed permanent camp location in the Pass arem may run into water
difficulties in winter and eariy spring, and a site on timbered ground west of Light Lake, at 6000 ft . elevation, may be more suitable for year-round operation.

ACCESS

Wo roads exist into the property. An old trapper's trail follows the bottom of Oliver Creek through the west and of the claims and joins lumber roads coming up the Adams Valley from Adams Lake. A Forestry access road links the Adams to the North Thompson Valley, in which run the No. 5 provincial highway and C.N.R. line to Kamloops. An alternative and better exit route may soon exist da a 30 -mile Forest access road, now being surveyed, along the Seymour Valley from the Seymour/Oliver watershed 5 miles south of the Ruddock claims to the Seymour Arm of Shuswap Lake. This point and the Trail smelter of C.M. \& S. are linked by the following route: via Shuswap Lake to Sicamous (30 wiles); C.P.R. to Kelown (75 miles); via Okanagan Lake to Penticton (35 miles); C.P.R. (Kettle Valley R.R.) to Trail (250 miles).

A third route fro the property lies east along Ruddock Creek (where no road or trail exists at this time) to the Columbia River, a distance of about 10 miles (with a drop of 6000 ft.), and thence via the Columbla River itself through the Arrow Lakes to Trall, a further distance of about 220 miles. However the dams planned at Dounle Creek and Lower Arrow Lake will block this route. The new dam site at Mica Creek is about 20 ilies up the Columbia River from the Ruddock/Columbia confluence, and the Downie Creek site a similar distance downstream.

For exploration purposes access to the camp has been made by helicopter based in Revelstoke or at a local base-camp on the Big Bend highway, 64 miles north of Revelstoke. Helicopter filght time from

Reveistoke to the camp is 45 to 60 minutes; from the 64 -mile camp, 10 to 15 minutes.

HISTORY OF THE PROJECT

The first Ruddock Creek claims were staked in late September 1960 by prospectors Mike Donahue and Tom Cross under the supervision of Earl Dodson, at the end of a season of systematic prospecting of a large area between Revelstoke, Adass River, and the northern part of the Columbla 'Big Bend'. Prospecting of the Ruddock headuaters was done from a camp on Dark lake at an elevation of 5400 feet, where the men were landed by a Piper "Super Cub" float plane, about a mile southeast and 1700 feet below the present in camp site. A helicopter plloted by Roy Hepworth allowed rapid staking of the generally rugged ground. At that time 74 claims were staked, but with changes in later years the total now held stands at 94 claims.

In 1961 a camp consisting of two 14^{\prime} by 16^{\prime} framed tents was set up by helicopter to house a crew of six to eight men at the present min camp site. Drilling with the Longyear "Prospector" EX rig by Jim Robertson (cap manager) and Norman Anderson, "Packsack" drilling by Mike Donahue and Mark Lemieux, and surveying by Jesse Cove assisted by Alex Smith Jr. and Rick Tipple, were carried out under the direction of the writer between June 1 and September 23, 1961. Drilling amounted to 3084 feet on the ' E ', ' M ' and ' T ' showings, 2668 , 340 and 76 feet respectively. The showings were also mapped in fair detail and a start made on the geological mapping of the whole property at acale of 1 inch to 1000 feet.

The work was expanded in 1962 to include the west end showings,
-6-
discoversd and staked by Cross, Donahue and Dodson in 1961. A second camp was set up at 3500 feet elevation on the east side of the Oliver Creak valley, and 278 feet of "packsack" drilling done on the " O " showing, by Doug Randall and Werren Fisher. Larry Collison and Don Williams took part in other work including the cutting of trails and the building of heliport at 4300 feet near the " Q " showing. Some local surveying was carried out by two U.B.C. engineering students, Charles Wong and Harry Jeng. Jie Robertson with several men hirea for the sumar added 3510 feet to the aril1ing of the "E" showing by means of the small Longyear "Prospector" drill. Having the services of an assistant geologist, Mike Stadnyk, to \log and sample most of the Arill core, I was able to spend a large part of my time on geological mapping and on the west-end work. Jim Robertson in 1962 as in 1961 took on most of the work of setting up the camp and ordering supplies as needed. In these two yonrs camp mintenance was eased by the proxinity of the "Adams River Project" prospecting camp directad by Ear 1 Dodson, situated in 1961 at the Columbia Big Bend 64-mile site, and in 1962 on the Trans-Canade Highwa 12 wiles west of Revelstoke. The cost of the hellcopter, based at Dodson's cemp, was shared between the two projects, and was thereby kept to a minimu for each project.

During the winter of $1962-63$ a contoured base map of the property area at scale of 1 inch to 400 feet was produced by the firm of McEihanney \& Co. using B.C. government air photos, and the geological Information gathered to that date compiled on it. (The map has since been redrawn, following a more mecurate and axtensive trianguiation survey of photo control points by Don Highe in 1963.) By the end of the

1962 season two-thirds of the 'E' zone ore-bearing structure east of the No. 1 fault had been drilled off at a spacing of 50 to 100 feet, and preliminary estimates of tonnage were possible.

GENERAL ACCOUNT OF 1963 WORK
An advance party of two men was landed at the main camp site by chartered Okanagan Helicopter Co. machine on hay 16, six weeks earlier than in 1961 or 1962. Snow depth at the camp elevation of 7100 feet was then at least 10 feet, and some days were required for the men to dig out snow from tant fremes, wile living in the "Butler"-type cookhouse erected in 1962. At the same time three men were flown to the Oliver Creek valley - the west end of the property - to dismantie tent frames at the old 1962 camp at 3500 feet elevation. During the following two weeks new camp was erected one mile north, at 4000 feet, on the steep timbered slope near the ' Q ' showing, on the eastern side of 01iver Creak valley.

The Falconbridge helicopter piloted by Roy Hepworth arrived at the Columbia River base camp on May 24 th. After being used to spot a third campsite (in the small cirque between the earlier camps) and to locate tentative sites for the first deep drill holes, this aircraft ferried equipment, fuel and camp supplies the $10-14$ mile haul across the Columbia River to the working camps. About 100 tons of material including fuel were moved by June 2nd, over half belonging to the drilling con tractors, Canadian Longyear Diamond Drilling Co. Drilling began on May 31, 1963, on ED-1, sited in 12 feet of snow on a 22° rock clope a quarterwle northwest of the in camp.

West camp buifiling was completed early in June. "Packsack" drilling in hole $Q-4$ nearby began on June 4 , while two men using a gesoline-operated "Atlas Copco" rock drill and blasting material began rock cuts at the northern extrenty of the ' Q ' showing.

There were at this time seven men at the West camp, and nine at the Main camp, employed as follows:

West Camp
Rock drilling and blasting, camp building - Rod MacPhee
Helper - Doug Randall
Diamond drillar - Phillip Lang
Helper - Warren Fisher
Assistant geologist - Tom Richards
Survey Helper - Bob McKitrick
Cook

- Nick Howich

Main Camp
Mining geologist in charge - Hans Morris
Geologist

- Nicholas Close

Canadian Longyear crew

Cook

- Ed Hagen (foreman) and five others
- John Glgilotti

Surveyor Donald Highe and helper Paul Lawrence came to Ruddock Creek early in July, and McKitrick and Howich left late the same month, but the remainder of the crew stayed through the season, to late September.

Buildings and crew of the West camp were transferred to the new Cirque campsite in a somewhat piecemeal move between August 12 and
and August 22nd. The Cirque camp provided a base for "Packsack" drilling of the nearby ' V ' showing, as well as for surveying and geological mapping of the area. Deep drilling was planned here later in the year, but was not in fact carried out, and by September 14th this camp was closed down. Three tent-frames and the wash-house were left intact. At the completion of the last deep borahole (ED-8) on September 23, the remaining crew and drilling equipment were moved, In good weather, from the Main camp to the Columbia base by the Falconbridge Hiller 12-E helicopter, with the assistance of an Okanagan Co. charter he11copter. The camp was closed down on September 27. Weather in 1963 stayed good to the end of the field-work period, unlike previous years when snowstorms forced withdrawal in late September.

Visitors to the property during the summer inciuded Mr. E. Muraro of C. M. \& S., Dr. Matt Hedley of B. C. Department of Mines, and Dr. J. O. Wheeler of G.S.C. and some of his crew working in the area. Mr. H. S. McGowan and Dr. Alex Smith spent a few hours at the aain camp at the end of August.

CORAUNICATIONS

Arrangements were made with Mr. Toby Belinski of City Transfer Co., Revelstoke, to take redio-telephone orders for bulk supplies, to be delivered to the $64-m i l e$ bese campsite on the Columbia Big Bend higmay. The Okanagan Helicopter Co.'s Hiller 12-E aircraft, based in Revelstoke with Mr. Mike McDonagh as pilot, made weekly supply trips to the camps on the property, bringing mali and small items direct, and ferrying bulk supplies from the base at 64-mile. A two-week supply interval wes tried during August, but did not prove successful, as by the time the
aircraft arrived at the camp it was seldom possible to ferry up two weeks' supply of food and fuel without running short of time to do intercamp personnel movements, drill moves or other small jobs on the same day. First call on the Okangan Co.'s helicopters in Revelstoke and Neison was in the hands of forestry agencies during July and August, the months of high forest fire danger, so that for periods of up to ten days neither of these manines was available. Some camp and drill movements planned to take place during these months were delayed as a result, but the cost of such delays must be counted as part of the price to be paid for having charter hellcopter available at all in the Revelstoke area, and was in any case no more than the cost of bringing our own Hiller in from the coast.

Contact with the Okanagan Telephone Co.'s exchange in Revelstoke was made early in June by means of the Spilsbury and Tyndall crystal-controlled shortwave transceiver used in previous years. Because of its relatively old design this set uses a heavy battery current, and was found hard to keep at full output power: it was frequently impossible to call Revelstoke with any likelihood of making contact. A modern higher-powered Marconi transistor set, the "Marconi IV" with 65 watt output, was rented in early August, gave better results, although the mountainous terrain surrounding the Ruddock capp seems to obviate completely reliable radio connection with Revelstoke. The telephone exchange at Kelown was at times more easily raised.

Between-camp comenication was maintained by voice-powered Japanese-made "Nobel-phones", which peid their cost many times over in helicopter hours saved, as well as keaping the geologist in charge at
the main camp in touch with work at other camps and at drill-sites. They also provided assurance in the event of accident of contact between outlying work-places and the radio-telephone at the main camp. These phones operate through thin plastic-insulated twin conductors, large sections of which have had to be laid afresh each year. About five miles of line was in use in 1963, lald wherever possible along an easily passable route between caaps, to simplify the location of breaks caused by windfalls, rock sildes, gnawing animals or badly made connections. On year-to-year basis the use of cheap ($\$ 5.00$ per thousend feet) thin wire may have been justified, but it now seems that heavier wire at two to three times the initial cost, if laid on the ground through the under brush, with slide and creek crossings well-marked for easy replacement of swept-out sections each spring, would be more economic. A saving of relaying and maintenance, plus time and trouble, would accrue where more than one year's occupancy is contemplated of camps in difficult terrain such as this.

In surveying some use was made of short-range "walkie-talkie" sets. These also provided a safety link between a base camp and a man covering rough country alone, although their value mas limited by their line-of-sight range. PROGRESS OF ED DRILLING

The AX wire-1ine equipment used on the job in 1963 had a nominal capacity of 1800 to 2000 feet. The depth limit was found to depend more on the strength of the thin-walled wire-line rods which were from time to time available on the job, than on any other factor. With new equipment the depth limit was put by the drill forman at 2200-2300
feet. Heavy wear in broken ground in the first three drill-holes resulted later in fraquent rod breakage which could not always be made good immediately because of temporary lack of dril1-rods in the Revelstoke area, or of a helicopter to bring them in. The rate of drilling was of course higher than would have been obtained with standard rod equipment including time consumed in moving, cementing, and waiting for the helicopter, it averaged 2600 feet per month. Working three shifts per din, the crews drilled eight holes totalling 10,593 feet. Six between-hole moves were made.

| | May $25-31$ | June July | August | Sept. 1-25 | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feet drilled | 111 | 2187 | 2903 | 2957 | 2436 | Tota1, 10,593 |
| Average/day | 16 | 73 | 94 | 96 | 97 | |

The strong fault zone penetrated by holes ED-1, 2 and 3 accounted for nearly all the nine days lost cementing, and also for most of the 38 feet of lost core.

It had been hoped thet some of the shorter drill moves might be made by winching the machine over the ground, but the bare rocky slopes made such a method uneconomic and even dangerous, and all moves but the first were made by helicopter. Each required about four hours Ilying time on the Job. The heaviest part of the drill was the frame, weighing about 750 pounds, but the largest and heaviest items moved were the drill tripod legs, of timber initially brought up from the Columbia valley, and weighing not much less than 1000 pounds before drying out. The size of timber capable of being moved at 7000 to 8000 feet by the aveilable helicopter is therefore likely to be the factor
limiting both the maximum drilling depth and the speed of operation. The total weight of rods wich can be raised in the hole, and the length of the pull (20,30 or 40 ft . at a time) are governed by the strength and length of the tripod legs.

RESULTS OF ED DRILLING
Sections RD64-5 and RD64-18 present a simplified view of the rocks penetrated by holes ED 1, 2, 3, 4, 7 and 8 , while the map on a scale of $1^{\prime \prime}-100^{\prime}$, RD64-19, illustrates the probable structure of the ' E ' zone to the depth drilled.

ED 1 was drllled to cut ore at 800 feet. At this depth mineralized rock was indeed found, but of a grade and form which suggested an intersection had been made beyond the nose or apex of the man fold. The mineralized rocks occurred below atrong fault zone. ED 2 was sited 200 feet south, so as to hit the main ore, but instead found the fault zone containing shemred ore material, some of which was interpreted as being from the main ore layer. The third hole was then collared 200 feet in the dom-plunge direction, to avoid the fault, but gave results similar to ED 2.

A step-out of 800 feet was then made, to distance of 2000 feet from ore outcrop. At this location ED 4 was drilled to a depth of 1955 feet, meeting mineralized strata at 1900 feet. These strata were interpreted as being on the upper limb of the recumbent fold, the intersection apparently being in a position analogous to that of E 12 or E 16, that is, at a distance of 600 feet or more from the main ore fold apex. A further intersection was therefore planned about 400 feet northeast (i.e. across plunge) and hole ED 7 and ED 8 eventually directed to this
target. The first of these holes, ED 7, collared vertically and drilled to 2004 feet, found two thin mineralized zones, or groups of layers, generally low-grade, over a core lexgin of 75 feet. Fifty feet of barren rock, mainly pegmatite, separated the mineralized sections, which were interpreted as being equivalent to those cut by E 10. (This borehole, drilled at the east end of the ' E ' showing in 1961, met the fold formed by the outer thin mineralized layer, near the apex, but missed the highergrade ore.)

At this point in the season, September 8, 1963, drilling footage and expenditure had already exceeded original plans; but, in an attempt to gain a positive intersection on the main ore, ED 8 was started, with barely time (given the normal delays) to complete the expected drilling before the usum late September snowstorms. This hole was aimed steeply southwest, to give an intersection 200 feet southwest of ED 7. Excessive deviation was soon detected, but as time did not permit keeping the hole straight by wedging and the use of standard (not wreline) rods, the intersections finally made were not more than fifty feet from those of ED 7. However, new information was obtained in that the hole cut a third thin but high-grade ore section, which appears to represent the tip of the main ore fold.

The structural map illustrates this interpretation, but the following possibilities have also to be consideredt 1) that the grade of the mineralization has as ahole deteriorated at this distance from outcrop, and that the 'min fold' no longer forms an ore unit west of the fault; 2) that the mineralized layers are so spread over vertical distance that the three deeper holes did not go deep enough to find the
main layer, and the mineralization found in all of tham is the outer (generally low-grade) part of the sulphide-bearing structure. The capacity of the drill used in 1963 was such that the deeper holes had generally to be stopped when no more than a few feet of the supposed foot-wall marker rock - a dark quartz-aica schist labelled "MQ" on the sections - had been drilled. As small thicknesses of a similar rock have been logged in a few holes within the mineralized zone, on the more open parts of the fold area drilled off, thickness of 30 feet of 190 is desirable for positive identification.

However, I believe the interpretation put on the intersections to be the most likely one, and that the information obtained is sufficiently encouraging to justify continued drilling down this axis in the following areas: (a) At about 2000 feet from outcrop, to find the centre of the folded ore shoot, and (b) at 8 to 10 thousand feet from outcrop (in the cirque), to pick up the mineralized layer. At the greater distance the chances of hitting the "E" zone fold apex, if it exists, cannot be rated very highly (having in mind the difficulty experienced much closer to outcrop) but an intersection an the limbs of the fold would itself be encouraging and add greatly to our knowledge of the structural position, persistence and grade of the minermized layers.

RESULTS OF GEOLOGICAL MAPPIMG

An interpretation of importance for economic assessment of the property, brought out by the 1963 mapping, is the correlation of the group of limestone-rich strate in the cirque, north of the ' U ' showing, with the limestone series which exists $300-500$ feet above the minerailzed ' E ' zone layers. If this correlation is correct, no more than 1500 feet of
drilling should be required to penetrate the mineralized horizon from a site near the 1963 Cirque camp, at an elevation of about 6500 feet. The inierred relationship is 11 lustrated by the $1^{\prime \prime}-400^{\prime}$ longitudinal section.

Mapping also showed that several thrust faults may be traced through the property; no doubt more exist than have been seen. The mineralized calcareous layer of the ' G ' and ' M ' zones are now belleved to have been followed by planes along which thrusting and mylonitization occurred. Mylonitic thrust-planes are seen to spilit and reunite, and to transect outcrops of pegmatite and quartz-mica schist at dip angles from zero to 60°. The finely banded mylonites frequentiy show atriation or mineral streaking in direction which is most often westerly; that is, roughly parallel to the linear structures presumed to be related to the major folding which forms our ore control. Mineral streaking on thrust surfaces and mineral lineation due to folding are in many instances not distinguishable, and some of the features mapped with a view to determining changes in fold plunge may in fact be due to thrust movement.

While mpping around the eirque, it was intended to examine the ' M ' layer as it occurs along the steep eastern wall. Near station $68 \mathrm{~A}, 2000$ feet north of the cirque glacier, are four thin mineralized layers, amounting to 2 or 3 feet in a total stratigraphic thickness of about 50 feet. Each leyer consists of a few inches of generally coarse grained sphalerite with a gangue of quartz grains and "pebbles", siailar to 'E' zone ore. The intervening rocks are calcareous quartzites carrying small amounts of pyrite, pyrinotite, sphalerite and mica. Above the uppermost sphalerite-rich layer is a thin quartzitic limestone, while
sills of pegmatite up to 5 feet thick occur within the section. (Pegmatites of 50 to 150 feet are seen elsewhere on this cliff.) The extremely fine "colloidal" texture, mylonitic banding, and minor folding, characteristic of the " W " and " G " showings (and evidence of the thrust zones outcropping along those showings) are not seen here. The steep ground prevented me from following the mineralized layers across the cirque wall, or reaching them by climbing along the northern rim, but the layers may be traced by eye on both the west-facing and north-facing precipitous sides of the snow-topped 9400 ft . mountein, until the outcrop at station 3 is reached, near the K showing.

Mapping in 1963 between the ' U ' and ' T ' showings added to the evidence supporting the fold pattern outlined by preliminary work in 1961 and 1962. The succession of metamorphosed sediments near station S-19 (21,021 N, $17,662 \mathrm{E}$) dips steeply south, and is near the upper apex of a recumbent S-fold, of which the tight 'E' zone synciline represents the corresponding lower apex. The upper part of the S-fold is in fact compounded of a numbei of srali staep dip reversals, which may be observed over a vertical distance of about 1000 feet on the aastern flank of the hill on which $5-19$ is placed. On the steeper western flank of the same hill the rocks have not been mapped. A few thousand feet to the northwest, near the ' U ' showing and the cirque stream exit, steep dips and a med dip reversal were recorded. Between the cirque exit and the ' V ' showing steep dips, with tight 'concertina' folds in the wica schists, are the general rule, but as the trend of mineralization is followed northwestward to the ' R ' and ' Q ' showings, contortions of folmtion beccae less, dips slacken off to less than 40°, and such folding as occurs is, on the whole,
more open and of small amplitude. The whole structural picture, as well as similarities of the rock succession at each place, suggests that the ' Q ' showing is in a position analogous to that of the lower ' T ' showing, on the middle limb of the s-fold.

DESCRIPTION OF MAIN SHOWINGS

The ' E ' showing (or Main showing) outcrops at 7600 feet elevation on an almost bere glaciated rock slope 500 feet above the Main Camp. Metamorphosed and isoclinally folded sedimentary rocks having general southwest strike direction and a dip of 40° to the northwest occur between thick pegmatite sills, and are also transected by much thinner pegmatite dikes, and sheets. The zinc and lead sulphides, as noted in an amiler report, appear to be concentrated in particular beds in a muartzite-limestone-micaschist sequence. Some at least of these beds are of large lateral extent, parallel to the compositional layering of the sediments. Other mineralized layers seem to be lenticular, but still concordant to the general structure. What may appear at first glance to be crosscutting or highly irregular structures are seen on closer examination to be the result of strong folding of the whole sedimentary series. The mineralized layers in this showing are exposed in the form of an irregular and elongated V, having its open 1isbs to the west. (See Map RD 64-6) The area of mineralization is 800 feet $10 n g$ and widens from 50 feet across the strike at the east and to 200 feet across the open limbs at the west. Detailed mapping has shown the V-shape to be the surface expression of a recumbent or overturned isocilinal fold of which the axial plunge is about 30° westward. Along the eastern 600 feet of the showing the mineralized fold lims are parallel and compressed within total true width of about

100 feet, on which has been imposed a series of small parallei fold waves. Over the western 200 Ieet of the showing the 11 mbs diverge, With a number of small subsidiary folds, and each of the two branches consists of 20 to 50 feet of strata containing two or three stronglymineralized layers along with low-grade or unmineralized material.

The mineralization is varied in composition and texture, but consists primarily of galena mad dark brown to black sphalerite in a calcareous quartzite gangue, with strong mineral layering and stratigraphic control. Considered as a whole, the one body contains as gangue minerals quartz, calcite, fluorite, feldspar, white and brown micas, some calcium and iron silicates, and barite. Pyrite and pyrriotite are comon, while chalcopyrite was seen as minute specks in some drill cores.

Different types of minernilzed layers my be discerned, as follows:

1) Very fine-grained mediun to dark brown sphalerite, generally with some pyrrhotite (up to ho\%) and containing sub-round grains or smil pebbles of quartz, with rarely green silicates. In extremely fine greined form this is styled "colloidm1" sphalerite. Leyers of this material grade up to 35 zinc. Its texture may be the result of granulation and myionitization of the coarser types.
2) Medium to coarse grained black sphalerite, occurring with gaiena in a 5 to 1 ratio, and intergrown with quartz grains to give a strong compositional layering consisting of short, roughly lenticular streaks. The streaky layered texture is similar to that of a greissic gabbro. The proportion of quartz may be from 25 to 75\%. Sections low In quartz may also show an appearance siallar to that describad under
3) above, with rounded aggregates or clots of quarta grains in adition to small grains and pebble-1ike masses. PYrrhotite, pyrite and chalcopyrite occur in very small amounts. Clots of pyrite and pyrrhotite up to 6 inches across are seen in quartzite layers near mineralized material. Mineralization of this type assays 20 to 30% zinc in the better parts, down to 10% in poorer material, grading into type 3).
4) Slightly micaceous and calcareous quartzite in which sphalerite with very minor mounts of galena (and locmily pyrite) occur as scattered grains or clots, with an assay of 2 to 10% zinc.
5) Thin-layered quartaite, the layers marked by thin granuler concentrations of either galena or sphaierite, with no apparent intergrowth of the two minerals, and containing bandsin which calcite and fluorite are major constituents. The sphalerite in this rock tends to be pale in colour, from medium brom to pale honey-colour. This material assays 2 to 5% inc and 1 to 2% lead, with some layers apparently containing more galena than sphalerite.
6) Crystalline 11 mestone containing small scettered grains of pyrrhotite and dark sphalerite, in which a faint layer variation may be seen in part, the rock assaying no more than 2% zinc.

Intarbedded with the minervilzed quartyites are more or less pure crystaliine 11 mestones and quartzites containing mimost no sulphides, or at most a sparse sprinkling of pyrite or pyrrhotite grains. Lnyers consisting almost entirely of iluorite, and apparentiy lenticular, are common in the western part of the showing, that is, inside the fold structure. They grade by interinying into caicareous and quartilitic material. Fluorite grains also occur as a minor constituent of well-
mineralized layers. A barite lens of 10 inches maximura thickness and about 50 feet in length occurs in the western part of the ' E ' showing, concordant with the compositional (and assumed stratigraphic) layering of the metamorphosed sediments.

Other rock types, in which mineralization has not been seen, are described later in this report. ' F^{\prime} Showing

One to three thin mineralized layers, similar to the medium grained material described above, occur in the gullies and cilfis 1500 to 2500 feat 5 Sif of the ' E ' showing and 500 feet from the min camp. The layers are spread over a $200-\mathrm{ft}$. thickness of westerly-dipping sediments and pegmatite sills, and none appears to be more than a foot In thickness. No economic quantity or any evidence of folding has been seen on this showing, and there is little need of further work here, although some mineralization may be hidden by a pegmatite capping. A series of lines spaced at 50 feet and marked on the rock, as at the 'E' showing, has been laid out to locate "packsack" drilling which nay be desirable to obtain assay samples.

The mineralized layers have been traced no further than a cilff at the 6600 ft . elevation, but with overburden stripping and pitting they may possibly be followed west towards the ' T ' showing, or into the talus and heavy overburden near Light lake. The detalled 400-scale mapping, which at present ends at the 6400 level here, should be continued southwestward for more stratigraphic and structural information. If the mineralized strata on the property are in the form of "cascade" folds rather than a single S-fold, then an apex analogous
to the ' E ' might exist at depth below the gully sepmeting the ' F ' and ' T ' showings. There is at present, however, no reason to believe evidence of this would appear at surface, and to drill for it would be something of a "wildcat" operation. "G" Showings

In the shallow, partly talus-filled creek beds 1600 feet west of the 'E' showing a disjointed series of small showings occur. The irregular pattern of the mineralization is due partly to intrusion of the zinc bearing sediments by pegmatite sheets cutting across the formational planes; pertly to the low angle at which the present ground surface cuts the planes of bedding and intrusion; and partiy to late movement and erosion on thrust fault surfaces which dip at relatively shallow angles to the west, again nearly parallel to both bedding or compositional layering and to the pegmetite sheets. Mineralized rock can be seen at intervals from 7350 to 8200 ft . elevation not far from a mein thrust plane, and also in disconnected patches leading towards the ' M ' showing. The mineralization appears thin and low grade at surface but where cut in hole ED 4 amounts to 56.4 ft . (true thickness about $4_{\mathrm{l}} \mathrm{ft}$.) assaying $6.12 \% \mathrm{Zn}$ and $0.79 \% \mathrm{~Pb}$ (this includes 10.8 ft . of pegmatite assaying less than $0.2 \% \mathrm{Zn}$ and several layers assaying over 20\% Zn.)

The mineralization is in part in quartzitic beds similar to the medium to coarse grained ' E ' variety, and partiy in layers showing strong mylonitic features - fine drag folds and very thin mineral banding. The lower grade rocks, apart from pegmatite, are calcareous quartzites. Mylonitized sphalerite-bearing calcareous quartzites may
be traced to the foot of the ridge north of drill hole ED 7 .
The ' G ' showing has not been drilled, except for the ED 4 intersection noted above. The thickness of mineralization revealed by ED 4 makes it desirable to do shallow test holes with the 'packsack' drill. A grid is already laid out over the southern part of the showing for this purpose. A minimum of four $75-\mathrm{ft}$. holes is recomended. ' m^{\prime} Showings

The two mineralized areas named the Lower and Upper ' H ' showings, 3200 to 4500 feet northwest of the main camp, are in fact a continuation of the series of showings just described. The lower ' n ' consists of $30-\mathrm{ft}$. thickness of mineralized quartzite in the form of a shallow synclinal fold plunging west at 10 to 20°, underiain by poorly mineralized, calcarcous quartzite and pegmatite. The area of mineralization is about 150 ft . This outcrop and the upper ' K ' showing 800 ft . north are bounded to the west partly by glacier and neve, and partly by more pegmatite which seems to be in the form of thick silis dipping gently west. The ' M ' showings are at an elevation of 8100 to 8600 feet, and were tested in 1961 by 15 'packsack' drill holes. Eleven holes on the upper ' M ' showed an average ore thickness of 10 ft ., containing $8.4 \% \mathrm{Zn}$ and $1.6 \% \mathrm{~Pb}$. Above the highest drill hole, No. M-11 at 8566 ft. , the mineralized layer is hidden by talus and neve snow, but reappears at the col overlooking the steep-aided cirque to the north. The layer may be traced by eye along the cirque wall westward from this point, but is not appromehable on the ground. It is visible, but has not been examined, on the ridge near airphoto point No. $10,2500 \mathrm{ft}$. NW of the ' M ' showing, and between this point and the small showing a similar distance due west
of the ' M ', which was described earlier (p . 16). The mineralized layers on the ' M ' showing are very similar to the ' G ', and have been the locus of thrust movement on a plane dipping with the beds at a low angle westward. Very thin and highly contorted mineral banding in a thickness of fine grained material, probably mylonitized calcareous quartzite, is characteristic of the ' M ' and ' G ' showings.

The lower ' M ' showing has not been traversed by a thrust plane and rock textures are siailar to those at the 'E' showing. Two holes drilled here, 13 and $M 15$, cut 10.3 ft . and 29.2 feet respectively of interlayered well-mineralized and poorly mineralized quartzites and limestones, similar to the rocks at the ' E ' showing. Assay averages in M 13 were $23.60 \% \mathrm{Zn}, 3.54 \% \mathrm{~Pb}$, and in $\mathrm{M} 15,8.61 \% \mathrm{Zn}$ and $1.74 \% \mathrm{~Pb}$. Both these holes were collared on the showing, and probably do not give total thickness of the mineralized rock down-dip. A further hole, $M 12$, was drilled 200 ft . down dip, but ran into a pegmatite sill which the packsack drill was unable to penetrate, and which probably overlies the mineralization.
'I' Showings
A series of small showings may be seen descending the west side and in the head of the gully between Clear Lake and the Main Camp. Eight DLH's were drilled on the western part, some of wich gave encouraging resuits. The structure visible at the showings, and 111ustrated by Maps 22 and 23 , is that of a relatively open fold, the axis plunging westward at 5 to 25°. The sedimentary compositional layering at the Upper ' T ' dips south, while at the lower ' T ', at 600 ft . lower elevation, dips are to the north. Daf intersections gave varied
results. Some fine flow folding and myionitization due to thrust movement is evident on the lover showing and in drill cores. (This is not related to the larger drag folding produced by the major fold pattern which is in a different direction.) Assay figures are shown on the Maps 22 and 23 . The mid- ${ }^{\prime} T$ ' showing appears to represent a fold apex, where the metasediments are highly folded. However the fold is small, and the best intersection, in DDH T-5, gave 6.4 ft . of $23.84 \% \mathrm{Zn}$ and $4.46 \% \mathrm{~Pb}$. Possibly the entire mineralized thickness was not penetrated, but two other holes drilled her drew blanks. Three drill holes on the lower ' T ' showing gave at least twice this thickness, but about half the grade. Excluding the small showings in the head of the gully, the ' I ' showings (upper, ald and lover) extend over 2000 ft ., but are saparated by pegratite silis dipping westward, cutting across the sedimentary structure but roughly parallel to the plunge of fold axes. Each of the sills is about 120 feet thick.

To date, work on these showings has not indicated ore concentrations comparable to the fold structure at the ' E '. Further close examination is desirable of the rocks between the ' T ' and ' U ' showings, but economic concentrations are not expected here, as the fold appears to be open with a number of small drags, rather than tightly compressed. 'U' Showings

These showings extend over a distance of 1600 feet along the eastern side of the glacial valley in which the Cirque Camp is sited. They are discontinuous and generally much folded, but on an exis different from the major fold axes of the ' E ' and ' T ' showings. Fold axis determinations on the ' U ' showing (and on belt of rock extending
northwest from the showing up to the head of this cirque) are oriented 240°, whereas fold axes elsewhere on the property are generally 270° to 300°. Two or three thin ore layers are visible, which on drilling in the folded area gave the following intersections:

DDH U-1 : 27.3 ft . assaying $6.00 \% \mathrm{Zn}, 0.18 \% \mathrm{~Pb}$
$\mathrm{U}-2: 29.6 \mathrm{ft}$: assaying $16.88 \% \mathrm{Zn}, 2.16 \% \mathrm{~Pb}$
U-3 : Entirely in pegmatite to a depth of 35 feet, the mineralized layers probably not having been reached at this dapth. Such ore as exists here is in the form of an elongated folded bundle of thin layers, as shown on the map (RD 6L-25). The southwestern end of the showings, as shown on the main geological map, consists of two thin layers, totally about $3 \mathrm{ft.}$, and has not yet been tested by drililng. The showings area warrants further work. It seems likely that fault In the bed of the creek flowing out of the cirque just west of these showings has cut off their westerly extension towards the ' V '. ${ }^{1} Q^{\prime}$, R^{\prime} and ${ }^{\prime} V$ ' Showings ("West End")

Map RD 64-24 shows the extent of detalled mapping on the ' Q ' and ' R ' showings, and the locations of shallow holes drilled during the last two seasons (1962-1963). This work, together with stripping and trenching of the parts suspected of being folded, showed that two mineralized calcareous quartzite layers can be traced as part of a relatively uniform rock sequence over most of the showing area, a strike length of 2800 feet. Pegmatite sheets interrupt the continuity of the metamorphic sediments and form steeper cilfis on the generally steep $\left(45-55^{\circ}\right)$ timbered slope. Overburden is for the most part not thick at the showing elevation of 4000 to 5000 feet, but the steep slopes
and bouldery surface material severely restricted the possible sites for the drilling, especialiy in the ' R ' to ' V ' area, Water supply posed a further problen, and drilling of the ' V ' showing was cut short in 1963 by the drying up of the creek. However, thirteen holes were drilled on the ' Q ' and three on the ' R ' showing, to depths up to 270 feet. Results in the holes hich seem to have penetrated the whole mineralized sequence (9 on the ' Q ', 1 on the ' R ') average 29 faet of rock assaying $5.1 \% \mathrm{Zn}$ and $0.9 \% \mathrm{~Pb}$. Minervilzation is generaliy confined to two or three layers, the uppermost 0.5 to $1.0 \mathrm{ft}$. , the central layer 1.0 to 2.0 ft. , and the $10 w e r m o s t 1.0$ to $5.0 \mathrm{ft} .$, Inmich grades reach $25 \% \mathrm{Zn}$, and $5 \% \mathrm{~Pb}$, similar to the figures on the eastern showings. Details of ariliing results are given on the map (RD 64-24) and in the dril1 logs appended to this report.

The single hole collered at the ' V ' showing in a very difficult location penetrated one minerm1ized layer of 2.3 ft, , assmying $17.03 \% \mathrm{Zn}$ and $3.43 \% \mathrm{~Pb}$. Three or four layers are to be seen on the showing itself, over a thickness of about 20 feet of calcareous quarteite. Further drilling here would be desirable, but would almost certainly be slow and expensive to carry out. The mineralized rock sequence steepens over the ' R ' to ' V ' showings to appear as nearly vertical layers with small zig-zag folds. Structurally it duplicates the section on and above the ' T ' showing, and though folded, is not expected to contain tight folds of the ' E ' type, on which an ore shoot might be located. METASEDIMENTS ASSOCIATED WITH YINERALIZATION

At anch of the showings the sequence of metasediments appears to have sufficient similarity to support the theory that the mineralization
was confined to a few thin beds before folding, and that little or no subsequent redistribution of sulphides has occurred. The succession may be stated as follows:

Description	Symbols	Thickness	Map C	our
Biotite-quartzite schist and micaceous quartzite, garnetiferous in part	MQ(G), QM		756	
Quartzitic limestone, minor biotitequartzite schist	LQ, (MQ)	50-100 ft.		740
(Local biotite-quartzite schist and quartzite)	MQ, QM	10-100 ft.		756
Amphibolitic quartzite, hornblende-garnet-biotite schist, some tremolite - and actinolite-quartzitecalcite schists	QA,HGM,ALQ	5-50 ft		739
Biotite-quartzite schist, minor quartzite	MQ, (QM)	50-100 ft		756
Thin mineralized quartzite, slightly calcareous, (maybe one or two well mineralized layers)	QZ,ZQL	1-5 ft.	-736,745	
Quartzite, slightly micaceous	QM	10-15 ft.		736
(Local barite lens on ' E ' showing)				745
Quartzitic limestone	10	1-15 ft.		740
(local fluoritic limestone \& quartzite)	FL			742
Quartzite, slightly micaceous, locally calcareous and galena-rich layers	QM	20 ft .		736
Biotite-quartzite schist, garnetiferous	MQ			756
There are local variations, but the existence of a limestone				
on one side of the main mineralized laye followed by one or two thin mineralized schist, amphibole schist and limestone, ' G ', ' T ' and ' Q ' showings particularly.	r, with qua layers and are charact The amphibo	ites on the section of b istics of th tic layer may	ther tite ' E^{\prime}, be	

of volcanic origin.
The fact of sedimentary control at one horizon has been stressed, since the conception of the origin and control of the ore must govern the line of approach to the proving of ore on this property, as well as to the exploration for other deposits.

Fluorite is associated with the ' Σ ' and west end mineralization but has not been noted on the ' G ' or ' M ', probably because of the shearing of these showings. It is more easily spotted in drill core than in outcrop except at the ' E ' where it forms a conspicuous lens or layer up to 2 feat thick, and about 200 feet long, with streaks of calcite and quartz, all parallel to the adjacent bedding. The fluorine, as well as the ore, may be of contemporaneous volcanic origin.

Berite appears as a lens on the ' E ' showing, but has not been 1 dentified elsewhere.

Quartzites fine to madium grained, .01 to $.05^{\prime \prime}$ grain size but with larger grains of 0.1 to $0.25^{\prime \prime}$ in soae sections, and in few places small pebbles up to $1^{\prime \prime}$ have been recognized. where associated with limestone and fluorite texture tends to be sugary. With increasing mica foliation and relic bedding become more evident. Calcareous quartzites may carry calcite as cement, or may contain thin (0.1 to 0.5) layers of calcite in a foliated rock carrying quartz, mica and amphiboie. There seems to be every gradation between almost pure quartzite and almost pure recrystallized limestone or marble.

Limestones (more correctiy crystalline limestone or marble) near the ore layers appear medium grained ($0.05^{\prime \prime}$), but limestones have been noted in the area with grain size up to $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. Fine, almost aphanitic,
limestones where seen are generally found to be on or near the line of a thrust-plane, and are mylonitic. The calcareous and quartzitic rocks with varied compositional layering commonly contain tremolite and actinolite. Minor amounts of sphene, scapolite and possibly vesuvianite are seen locally. Some of these minerals, as well as red garnet and hornblende, are more common and of larger crystal size along the contacts of the metamorphosed sediments; but it should be noted that the thickness of the skam zone is generally small ($4-\frac{1^{\prime \prime}}{2}$), seldom over 1 inch. Even the cleanest-looking limestone is found on close examination to contain a fairly ragular distribution of pale green sillcate minerals, though amounting to no more than 1 or 2% of the rock, with a general concentration in layers parallel to the boundaries of the bed; that is, they are a sign of relicte bedding. On a weathered bedding surface in the area near the showing limention is discernible, due to the arrangement of the silicates parallel to the local axes of folding.

Quartz-mica schists allow themselves to be divided fairly readily into two in types: 1) those in which the mica, being fine to medium grained, uniformly distributed through the rock and pale or medium brown, pale green or white in colour, is an inconspicuous constituent, and forms perhaps 5 to 15 of the rock; 2) those made up of varied layers of quartz grains and a dark brown, coarse flaky biotite, strongly schistose and oftan containing pink garnet in an eye-like texture, in which the proportion of alca appears to be from 25 to 50%, though richer lenses of almost pure biotite are seen. These types are labelled " OM " and "MO" respectively on drill logs and maps. There seems to be littie gradation between them, but the less micaceous type tends to grede into quartzite
in which mica is present in very smali amounts and which is indicated by " $\mathrm{Q}(\mathrm{M})$ " or " Q " on the 1egend.

Beds in which quartz forms the major constituent but which contain layers carrying varied amounts of calcite and fluorite, with small amounts of galena and sphalerite, are also to be seen in the centre of the ' E ' showing, and can be traced around the fold.

Actinolite-quartz-calcite schists with accessory sphene, outcrop over a wide area near the ' E ' showing. They have a characteristically banded or layered appearance, with grain size and composition verying from layer to layer. This rock has been mpped as " AlO " and occurs interbedded with rocks variously labelied $A Q, L A Q$ and $Q A L$ depending on the minerals which appeared during mapping to be dominant. Layers of each composition may be readily traced along the strike.

Also seen in this sequence is a layer of coarse grained actinolite, in which, at irregular intervals, large lenses (2 to 4 ft.$)$ of coarse biotite occur.

Where the actinolite-bearing schists are cut by pegmatite intrusions hornblende appears along the contact. Hornblende is seen elsewhere in the form of massive medium-grained dark-green to black hornblende schists, with varied proportions of blotite or garnet.

Hornblende-biotite garnet schists also occur near the ' G ', ' M ' and ' T ' showings. STRUCTURE OF THE ORE-BEARING LAYERS

The general picture of an isoclinally folded sequence of sediments with axes plunging gentiy westward has already been described. Axial planes dip northwest or southwest at shallow angles. The ' E '
fold has been termed synclimal and the ' T ' to ' R ' fold anticlinal, but there is in fact no direct evidence of the way up of the metamorphosed sediments in the property area. (J. R. Wheeler of the Geological Survey of Canada has found evidence of a basement dome to the southwest, suggesting the likelihood of axial planes of folds being overturned to the northeast in the Ruddock area; this would make the ' E ' fold an anticine.) It is possible that determination of the way up of the sadimentary sequence would have bearing on the search for further orebodies in the Ruddock area.

A study of the $1^{\prime \prime}-400^{\prime}$ geological map (RD 64-3 and -4) shows a belt of 240° axes generally following the centre line of the cirque in a northeasterly direction through the ' U ' showing. On either side of this belt drag fold axes and related lineation are generally the direction 270 to 290°. The shear lineation visible on the ' G ', ' M ' and ' T ' showings may be related to the 240° cross-fold system. To predict the position of the mineralized layers extending Iron the 'E' showing beneath the cirque is therefore not a straight-forward matter.

Vancouver, B. C March 12, 1965.

H. R. Morris,

 Geologist.
RUDDOCK CREEK ZINC-LEAD

SUMMARY FOR 1963 AND PROPOSALS FOR 1965
A. SUMMARY OF 1963 WORK AND EXPENDITURES

Sixteen men worked on the property for lit months. Expenditures charged to the profect for the whole year werf $\$ 150,500$. This figure and those quoted below include supervisory and administrative ensts. The subdivision of costs among the phases of the work is to some extent arb!trary.

I 'E' Deep Drilling ('ED' holes)
1963 Cost: $\$ 91,000$
Work: 9243 ft . in six holec (max. 2039) drilled at 1200 to 2200 ft . from outerop on resumed downarc (westerly) extensinn of 'E' showing.

Results: Thin mineralized lajers at 2000 ft . depth identified as marginal to ore shoot; intersections $600-900 \mathrm{ft}$. deenier than expected due to movement on major normal fault, downthrow to west.

Proposed for 15s: To continue deep drising (see below).
II 'E' Showing Drilling
1963 Cost: $\$: ?, 000$
Work: 1350 ft . in two holes driller to define location of fold hinge or apex, the northern limit ase stort.

Results: Hinge line defined within $h 0 \mathrm{ft}$. horiznntally, at 600 ft . from outcrop indicating pirnge direction of $290^{\circ} \mathrm{T}$, at minus 37°.

Prorosed for $165:$ Two ved fit hries.
III
'West End' Drilling on Small Shewings

$$
1963 \text { Cost: } \$ 12,000
$$

work: 1500 ft . in $i ?$ hoier.
Results: General uniformity f mineralization confirmed cuer 2000 ft . strike length in ($2, \mathrm{Q}$ and showinas, as two layers lft. to f ft. thick, carrying 12 to 25 combined zinc and lead; chre holes drew a blank: two (on if and U drag folds) cut 10 ft . of 25130% combined zinc and lead.

Proposer for $165:$ No further work on Q, R and V four 'packsack' wos on U.
'West End' Stripoing and 'Trencting
1963 Cost: $\$ 1$: (1) 0
Work: $23.300 \mathrm{cu} . \mathrm{ft}$. of rock and overburden shifted by hand labour, using ăas? ine rock drill and explosives. (Cost also includes some remeval of moraine gravel from 'E' showing by around sluicing.)

Results: Seven smal; showings in ' O ' tc ' R ' area exposed or extended; exvosures improved on 'E' showin?.

Proposed for '65: Similar work on 'il' and 'r' sheninas.

V 'West End' Detailed Mapping

1963 Cost: \$6,000
Work: ' Q ' and ' R ' showings and stripped areas surveyed and mapped at $i^{\overline{\prime \prime}}$ - 20^{\prime} over strike length of 2000 ft .

Results: Continuity of mineralization, structure and relation to enclosing rocks made clearer.

Proposed for 155: No further work on this scale.
VI Area Geological Manping
1963 Cost: $\$ 7.000$
Work: Mappina at $1^{\prime \prime}-400^{\prime}$ extended or filled in over area of about. 24 claims in centre of property.

Results: General structure of area and behaviour of mineralized layers further elucidated.

Proposed for 165: Similar work on edges of property.
Topo Survey
1963 Cost: $\{13,500$
Work: Network of trianalation points laid out, surveyed and reiated to air photos: most claim nosts surveyed; boreholes and showincs located.

Results: Controlied contour map produced at l" - Lou' scale, 50 ft. contour interval, covering property and surrounding area (9t sn. miles).

Proposed for $165:$ Gurveying limited to borehole location.
B. PROPOSALS FOR 1965 WORK

While there is a possibility that the 'E' nre shont fades out in denth, evidence of manoing and shallow drllling on the property on a whole does not support, the $i d e a$ of deterioration, and the $; 93$ En drilliny indtcater no positive change in the plunging fold structure tevond the existence of the major normal fault. The three deeper heles driiled bevont the fault fEUL, 7 and 8) hit thin ore layers which are, 1 belleve. "arginal to the acntral ore fold structure (see map).

Secondly, areal mapping indicates trat near the if showing icirque area) the mineralized $? 0^{\circ}$ fold structure moy he at 150 to $;$ fol feet from surface. This re:atively sha'? ow tepth! in ontrast to the depth calrulaced. from a constant 3° munge from ontcrob, may be due to cross : Aling on ia 200-240 axis, to atioh the リ-showing draq finlds are related iee landiurifu: section).

Between the $-i r q u e$ and the area of $106 ; \mathrm{ED}$ aril:3nc the ore efuctare
 and the plunce parallels surfare deverminatior..

The proposed program may be subdivided as follows (estimated costs based on total inclusive average for 1963 drilling):
i) Continued testing of mineralized layers between EDL and EDK: two holes, estimated depth 2500 ft :
inclusive cost \$ 48,000
ii) Testina of ore structure beneath circue area; four holes estimated depth 2000 ft :
inclusive cost $\$ 75.000$
ili) Testing location of ore structure in centra: nart of pronerty: three holes, estimated depth 3000 it .:
inc.usive cont $\$ 8 / 1, O M$
Tota: Deep Drillino: \$ 20.000
iv) Additicnal areal marning at 1" - Loo scaie: \$ \%.000
v) 'E' showing drilling, to test ore fold at $600-p \%$ ft. from nuteroo;
two 750 ft holes: $\$ 13$, on
vi) Stripping and shellow drylline on U and T showina: \$ i,000

TOTA: $\quad \$? 38.04$
$\therefore \rightarrow$ -
Deep drilling ectimates for 1965 are based on 1963 inclusive costs and on tentative estimates made by the Canadien! nngyear Co., who handed the 1963 contract. Drilling to 300 ft . necositates a heavier drillin: riq than was used in 1963, and this in turn is ike to foree the use of peme fowsfat heligonter than the hiller l2E both, for the initial and finat mouea (aff for drill movemeats ketween situs.

$$
\begin{aligned}
& \text { H. }{ }^{2} \text { Norris. } \\
& \text { H. }
\end{aligned}
$$

Vancouver. B. C.
January ?, 1965

1963 Expenditures :-

Drilling - Salaries: $\$ 18,000$ (6 men for season - covers supervision of $E D$ and Q, and drilling of 0$) \$ 3000$ per man		
ED Contract:	$\begin{array}{ll} \$ 61,500 & \begin{array}{l} 10,500 \text { feet }-\$ 5.85 \text { per for } \\ \text { drilled on } 0) \end{array} \end{array}$	$130 \quad 1500$
Transp.:	$\$ 16,000$ 1h camps operating, 10 men, 1 small drill	arge drill
Field Exp.:	\$ 14,000	
Surveys - Salaries:	$\begin{aligned} & \text { Q mapping (} \frac{1}{)} \text {, topo (2), stripping (1), } \\ & \$ 3000 \text { per man } \end{aligned}$	
Transp.:	\$ 14,000 1t camps, 4 men	
Field Exp: ${ }^{\text {a }}$ \$ 6,0004 men - $\$ 1500$ per man		
Assays, Admin. Taxes: \$ 9,000		
\$150,500 TOTAL		
Expected Costs - 1965 :-		
Drilling - Salaries:	4 men $\times \$ 3000$	\$ 12,000
ED Contract: has been estimated at 12% above 1963 average i.e. $\$ 6.55$ for total of $22,000 \mathrm{ft}$. 140,000		
Transp.:	Two camps operating, 15 men, 2 drills - smy 150% of 1963	24,000
Field Exp.: two camps, etc. - say 150% of 1963		21,000
($\$ 9.15$ per foot)		\$201,000
E Showing Drilling 150	1500 ft . at $\$ 8.00$ per foot.	\$ 12,000
Surveys - Salaries:	3 men (including stripping \& survey)	\$ 9,000
Transp.:	\$1500 per man)	
Field Exp.:	\$1500 per man)	$\begin{array}{r} 9,000 \\ \text { क } 18,0000 \end{array}$
Assays, Admin., etc.		\$ 7.000
	TGTAL	\$.38,000

NOTES ON LOCATION OF DRILL CORE

Drill core recovered by 1961 and 1962 drilling on the Ma in ' E ' showing is stacked at a point 40 feet or 35° from station 5-2, which is the highest point of ground south of the small lake at the showing. Core from the 1963 ED series of holes are in the case of each hole stacked 20 to 50 feet south of the site. Part of the core above the mineralized section in holes ED 7 and ED 8 was discarded at the site. All mineralized material wes split for assay, the second half remaining In the core boxes.

Core from DDH's M 4 to M11 is stacked near the helicopter landing area (a rough rubble platform) on the ' K ' showing. Core from holes M 1 and M 2 is stacked near the claim posts about 100 feet north of the showing. $M 2$ core is stacked 50 feet northwest of the site. None of the ' M ' drill core was split, and little but non-mineralized material remains in the coreboxes.

Coreboxes containing rock recovered from ' T ' showing drilling are stacked at several points: T 1 to $T 3$ about 100 ft . east of AP-39, near the lower end of the showing; $I 4$ to $T 6$ on the mid- ' T ' showing, near the sites of the these holes; $T 7$ and $T 8$ on the upper- ${ }^{\prime} T$ ' showing, near the sites of the holes. Parts of the cores of holes $T 4$ to $T 8$ were removed to the campsite east of Clear Lake for logging and splitting, and are stacked there.

Location of core storage on the ' Q ' showing is shown on the West End Showing map, near the heliport at the 1963 campsite. This includes core from the ' R ' and ' V ' drilling all of which was split for assay.

Drill core from holes U 1 to $U 3$ is stacked at the Cirque Camp.

$$
\begin{aligned}
& \text { TO ACCOMHAMY }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 人léRIS (1965 }
\end{aligned}
$$

Permath alide

$$
1^{\prime \prime}=400^{\circ}
$$

FALCONBRIDGE NICKEL MINES LIMITED

January 27, 1967
Dr. Alex Smith, Falconbriage Nickel Mines Limited, 504-1ll2 W. Pender St., Vancouver, B.C.

Dear Alex:
Thanks for your memo on Ruddock Creek. I have no thoughts about proposing more work for the near future. However, I do think it is time for a review of our property holdings. It seems to me that all we are doing, right across the country, is maintaining properties and acquiring new properties. We never seem to bring any to a conclusion. I would like to produce a neat volume to present to the brass. This should contain a concise summary of each and every property, setting forth the potential, and what should be done to establish or disestablish said potential. I feel that the brass is somewhat confused aoout the objectives of our exploration policy.

I study the reports sent in from the Vancouver office, but I suspect I often draw erroneous conclusions therefrom. If you can find time to undertake some of these reviews, I will be grateful. I am thinking in terms of the end of the year for finishing the job.

Further to Ruddock Creek,-- Hans' proposals for tracing the E Zone fold by deep drill holes, west of the presumed normal fault, frighten me. In the first place what reason do we have for believing that such a tight fold will persist on the plungeextension. The ED series of holes are rather negative. If ED 8 did penetrate the extreme nose of the fold, maybe Hans is right and a deep hole between $E \alpha 8$ and ED 4 might confirm his reasoning. However, continuation of this program west to the cirque is a costly business and it might well be abortive.

This led me to wonder if relatively shallow drilling could prove up tonnage. Suppose Hans' overall fold picture is correct;-but rather than having a consistent pattern, on plunge, we have local folds making and dying out. The concentrations of sphalerite and galena would be in the minor synclinal and anticlinal locals. I agree that any such concentrationswill be diluted by pegmatite.

If we assume that the M showing, the Lower M showing, the G showings, and the $\mathbb{E D} 4$ intersection, represent the same horizon, then, even allowing for thrust faults, there must be a number of local folds. M-15 on the Lower M occurrence suggests thickening of the ore horizon as the result of a tight synclinal fold.

If the M showing persists on a westerly dip under the snow field, somewhere between the main exposure and the cliffs at 20,000 E , there should be some real warping. If the snow is deep, maybe such has been eroded away. I wonder if the snow field would support a drill set-up.

Regards,

A. S. Dadson

ASD:PR
oate, January 30, 1967

$$
X F-70-106
$$

ro: S.N. Charteris
cories ro. A.S. Dadson
A. Smith
mom. E.D. Dodson
sunect Pudiock Creek
As a very much interested bystander to the recent interchange of memos on Ruddock Creek I would like to make the following coments.

First, I can sympathize 100% with Stew's desire to (a) establish on a fimer basis the fold structures controlling the ore and (b) to find a lower cost method of increasing the reserves.

In regard to (a) it appears that we should do everything in our power to encourage Dr. J.T. Fyles to proceed with his structural study. At the end of this season he will know whether the area warrants a full-scale study. Thould he undertake such a study there should be fev structural questions unanswered two years from now.

There are now several interesting suggestions in the hat as to possible ore controls. Unfortunately at the moment any or none would appear to be equally likely. I would tend to favour a modified version of Hans' original.

The chief characteristic of the Adams River area is the superposition of two directions of folding. If this holds in the muddock area we can expect to see lenticular bodies of ore grade material along the main axis or at best a rather snake-1ike trace to the fold axis and any attendant thickened sulphide zone.

With regard to the fault which displaces (?) the ${ }^{\text {I }}$ ' zone axis I would say that it does appear from air-photo studies to be the continuation of a strong northerly-trending lineament. The relatively straight trace suggests to my mind that this and other similar lineaments are tensional features related to the late arching of the Monashees. The abundance of lid-Eocene lamprophyre dykes in many of these lineaments serves to emphasize the above.

Regardless of the interpretation placed on tis aoove fault there is a broad suggestion, particularly noticcable in the $1^{\prime \prime}=400^{\prime}$ maping, of an ' S^{\prime} fold outiined by the crystalline limestones and schists around the ' E^{\prime} zone and back up parallel to the ' G^{\prime} zone. Hans and I had discussed this possibility earlier - his conclusion at that time was that the 's' was more attenuated - extending to the ' I ' zone.

If the complimentary fold is in fact hidden by the pegratite at the base of the ' G ' zone we have another locus for shallow drilling in that area; the approximate location indicated by the islands of schist in the pegmatite in the vicinity of $23,000 \mathrm{E}, 22,000 \mathrm{M}$.

As regards (b) I see no major problem in drilling from the ice to the west of the ' \mathbb{M}^{\prime} ' zone. The ice surface is relatively smooth and as nearly as I can remember we believed the ice to be only a few feet thick.

Our biggest problem in this area would seem to be the unknown thickness of pegmatite in the various thrust slices and its position relative to the ore horizon.

Earl D. Dodson
EDD:GK
A.S. Dadson
A. Smith
S.N. Charteris

Muddock Creek

I haven't looked at the Ruddock report since it arrived in the spring of 1965. Without funds to work there and with the assessment work in good standing for years to come, I had ignored its problems. Your memorandum resurrected them.

The possibility of developing tonnage in the G zone based on the E.D. 4 intersection looks good, however there are several difficulties. The first will be the problem of correlation of inter sections since the G zone is flooded by large masses of pegmatite. From H. Morris' mapping, the pegmatite has invaded passively, assimilating the rocks without reference or disruption. Individual intersections may appear to line up, but similar to the dyke swarms at Tasu, there may be considerable barren material between them. According to the field notes, exposures in the $N-G-F$ area are excelient so there is 1ittle reason to suspect more mineralization than is shown on the maps.

Second is the problem of the thrust fault shown on Morris' map RD. $64-5$ or passing through ED 4 at a depth of 220 feet (but not recorded in the logs). The usumifregular surface of such a fault plane could cause some very erratic offsets and "smearing" of the mineralized horizon.

This brought me to a re-evaluation of Morris' structural hypothesis and bis proposal for continued deep driliing west of E.D. 4 through to the cirque north of the U zone. The concept of a pencil of ore plunging continiously westward at depth hinges on the fault west of the E zone being a normal fault. But is it a thrust? Does the E zone represent the northeast end of a canoe shaped recumbant fold and the F zone its southwest extension? Then the broad conception of an overburdened fold is correct but the thick "penul" is attemated at a shallow depth. Also the M - G section becomes a separate fold, and is worthy of further drilling.

In support of your suggestion, I would like to see shallow drilling (less than 500 feet) done in the vicinity of the G zone to see if the structure postulated by Hans on Map R.D. 64-5 can be corroborated. This would also serve to see if the tonnage you envisage (and I say will be pegmatite diluted) can be outlined.

We hope the structure problem will be further clarified this sumer when Dr. J.T. Fyles of the B.C. Departaent of Mines will spend a wonth on the Ruddock Creek property. Dr. Fyles is acknowledged as a structural expert on the highly folded structures of the Kootenay arc so we are naturally pleased to leam that another analysis will be forthcoming. I think we should aweit his results before planning any further work.
S.N. Charteris

SNC:GK

FALCONBRIDGE NICKEL MINES LIMITED

CABLE ADDRESS "FALCONBRIJ" TELEX 02-2720

7 KING STREET EAST
TORONTO 1, CANADA

January 23, 1967
Dr. Alex Smith, Falconbridge Nickel Mines Limited, 504-1112 West Pender St., Vancouver, B.C.

Dear Alex:

RUDDOCK CREEK

After looking over Hans' reports and maps I am wondering if the next step should be on the projected extensions of the E Zone fold. I am somewhat intrigued by the possibilities in the upper layer, as represented by the M and Lower M showings, and by the intersection in E-D 4. It seems to me that there has to be some rather tight folding here which could mean some comparatively thick sections of ore. The suggested grade is comparable to that of the E Zone. (ref. accompanying sketch)

Drill exploration should be relatively quick and low cost. I don't know if the snow field to the west of the M showing could hold up a machine, or if it is thin enough to melt or dig away.

I feel it is time we had a review of all the B.C. property holdings. We are getting some embarrassing questions from above. These appear to be based on confusion more than anything. Would appreciate your comments on Ruddock. and others.

Regards,

A. S. Dadson

ASD:pr
c/c: S. N. Charteris
G. P. Mitchell

Rudhatic 6000 seot

$$
\begin{aligned}
& E \text { ZONE } \triangle 100-110 \\
& \text { + AVG } 23 \text { MORRIS MAP } \\
& B . C A L C ~ \\
& \text { B } 85 / 30 \\
& B \text { AVERAGE } 283 / 28 \\
& \text { AP AVERAGE } 25 / 32 W
\end{aligned}
$$

\because
$\therefore 0$
\therefore

0

$$
\begin{gathered}
\triangle M-37 \\
\text { LDAK A/C } \\
\text { PASS \& SLOPETO NE }
\end{gathered}
$$

$$
\begin{aligned}
& \text { B. OMPNANE } 30 / 32 W \\
& \text { Av B. } 286 / 25
\end{aligned}
$$

$$
\begin{gathered}
A \vee B, 2 B 6 / 30 \\
\pi B, C A L C 286 / 30 \\
A P, 25 / 30 \omega
\end{gathered}
$$

- 258ω

$$
\begin{aligned}
& \Delta 85-97 \\
& \triangle 383-44 . \\
& \text { F-G } \boldsymbol{G} \text { सNCLANE } \\
& 49120121
\end{aligned}
$$

$$
\begin{aligned}
& A P_{1} A \cup 0 / 10-30^{\circ} \omega . \\
& \text { FOLDED OM N TS AXIS } \\
& \left\{\begin{aligned}
3.5 l, & 270 / 25 \\
& 245 / 20
\end{aligned}\right\} \text { Lensstar. } \\
& \text { OR AN } 264 / 20 \\
& \text { Tavile } 2605 / 20 \\
& \triangle 146-165 \\
& \text { U Zoore }
\end{aligned}
$$

$$
\begin{aligned}
& \triangle 181-201 \\
& Q R V \text { s How inas }
\end{aligned}
$$

$$
\begin{aligned}
& \odot \cdot \\
& \text { - • } \\
& 0_{0} 0_{0}^{0} 0 \\
& 0 \quad 0_{0} 0 \quad 0 \\
& 0 \\
& \begin{array}{lll}
0 & & \\
00 & 0 & 0 \\
& 0 &
\end{array} \\
& \text { (} \\
& \text { 。 } \\
& 0 \quad 0 \\
& \text { © } \\
& \text { - } \uparrow
\end{aligned}
$$

$$
\begin{gathered}
A \vee A P_{1} \\
B_{1} \quad 20 / 254 \\
288
\end{gathered}
$$

$$
\begin{gathered}
44-68 \\
\text { CLEAR CREEK } \\
B A S \text { NH } \\
\text { G ZOHE-TZOME }
\end{gathered}
$$

$C=38^{\circ}$
$A P^{P}+C A L C 6 / 28 W$
$B+C A L C$
$B, A Y / 25$
$B+278 / 24$

隹 $\angle W$ OFT ZONE $4166-180$

$$
\begin{gathered}
\text { M ZOME } \\
\text { TRIOGE Tow \& SLOPES } \\
\text { NEARB- }
\end{gathered}
$$

EDI: 122-144
AP FoLOBLO ON LOW H PLungina Axis
6.

Dr. A. S. Dadson,
Falconbridge Nickel Mines Limited, 2200-25 King Street West, Toronto 1, Ontario.

Dear Stew:
Ruddock Creek
In response to your letter to Alex, dated December Fth, I enclose four rather hurriedly-drawn sections, showing what the structural picture might be at 2000-foot intervals in the direction of the fold plunge. They are at right angles to the $1^{1 \prime}-1000^{\prime \prime}$ "Inferred Cross-Section on Plunge" attached to my report dated October 18, 1962. The position of the "E" fold and other parts of the structure are projected at minus 15° in the $N 60^{\circ} \mathrm{W}$ plunge direction. 30
When one attempts to fit the outcrops located on ny $1^{11}-1000$: map of the showings (attached to the report mentioned above) into a simple structural cross-section, a number of irregular folds appear. Those I believe are not so much folds as offosets of the ore horizon brought about by the intrusion of thick pegmatite sheets dipping westward at a shallow angle. The greater width of the anticlinal "T" fold as compared to the syncilinal "E" fold may in part be similarly explained. I have shown the position of some of these sheets on the sections: some have been mapped, sore have not.
is to the plan for further exploratory drilling: I agree with the idea expressed in your letter, and intended that the first paragraph under "Further Work" in my report should suggest the same thing. I will send you a tentative plan and estimates before long.

Yours very truly,

G

RM SM
H. R. Morris.

Encl.
c.c. A. Smith

REPORT ON
 RUDDOCK CREEK LEAD-ZINC PROPERTY
 1961 to 1963

IMTRODUCTION

The description of the 1963 summer field work contained in these pages is intended to supplement my earlier progress reports on the property. Where approprlate a suming-up is made of data gathered since 1960 on each of the lead-zine showings, and on the general area. An account is also given of methods of work and some of the difficulties encountered, es an ald to future planning.

SUMMARY OF 1963 RESULTS

Seventeen men drilled, trenched, surveyed and mapped geology during the four-month season. Over 12,000 feet of drilling were completed In this time, at three camps, supported by a helicopter chartered from Okanagan Hekcopters Ltd. in Revelstoke. Total cost (for the full year) was about $\$ 240,000$.

The attempt to prove the down-plunge continuation of the ' E ' Zone ore, at a distance of 1000 to 4000 feet from outcrop was on the whole unsuccessful. Six diamond-drill holes avaraging 1530 feet in depth were drilled to this end. A post-ore fault (named the No. 1 fault) cutting across the plunge of the ore structure at 600 to 1000 feet from ore outcrop, was found to have moved the down-plunge block $600-800$ feet deeper than anticipated. Lowgrade mineralization in the down-thrown bloch was found at a depth near the limit of the drilling apparatus used,

点
in three boreholes collared at an elevation of 7800 feet a.s.1. The high-grade ore of the ore-bearing fold structure is belleved to have missed by three drillholes, due partly to unexpectedly great dev

