

Atomic Energy Commission de contrôle Control Beard de l'énergie atomique DIRECTORATE OF LICENSING Safeguards & Nuclear Materials Licensing Division

Your file Votre référence

Our file Notre référence

DEPUTY MINISTER OF M

22-C-99

March 28, 1977

Consolidated Rexspar Minerals & Chemicals Limited 20th Floor 4 King Street West Toronto, Ontario M5H 1C2

Attention: M. J. de Bastiani, P. Eng. Vice-President, Technical Operations, Denison Mines Ltd.

& PETROLEUM RESOURC PEC'D 77777 PERRED TO DATE 1: DOTS N. D. M. 7777 A. D. P. L. R. L & P. LtdD. FILE

Dear Sir:

This will acknowledge and thank you for your letter of March 24, 1977 with which you enclosed three copies of the report of work carried out during 1976 by Consolidated Rexspar Minerals under Exploration Permit MX 51/69.

Yours sincerely,

Mrs. N. S. Blackman

M. J. Stackman

:sb cc: Mrs. M. Kustka Claims Supervisor, Exploration Division

Geological Survey of Canada

√ Dept. Of Mines & Petroleum Resources Victoria, British Columbia

PROPERTY FILE

P.O. Box 1046 Ottawa, Canada K1P 5S9 C.P. 1046 Ottawa, Canada K1P 5S9

CONSOLIDATED REXSPAR MINERALS AND CHEMICALS LIMITED

EXPLORATION PERMIT MX 51/69

Samliaw

1976 SUMMARY REPORT

By

A. T. AVISON

To obtain material for metallurgical testing and better definition of the ore zones, 16 holes totalling 2,000 feet of core drilling was put down on the Rexspar property during 1976. The whole cores were shipped to Lakefield Research Limited where test work was carried out under the direction of A. H. Ross & Associates. Site investigation of the proposed mine site and mill site and environmental studies were carried out by Kilborn Engineering (B.C.) Limited.

CORE DRILLING

The detailed geology logs and sample analyses are attached. The drill hole locations are shown on the accompanying plan. The drill program summary follows:

Hole No.	Size	Lat.	Depth	Bearing	Dip	Length Feet
76-A-1	HQ	24628	24970	- ,	900	70
76-A-2	HQ	24880	24970	· -	900	165
76-A-3	HQ	25000	25115	2700	890	73
76-A-4	HQ	25050	25000	-	90 ⁰	118
76-A-5	HQ	25110	25110	270 ⁰	89 ⁰	73
76-B - 1	HQ	25400	23850	00	· 89 ⁰	133
76-B-2	HQ	25360	23930	. <u> </u>	90 ⁰	93
76-BD-1	HQ	24350	23355	·	90 ⁰	97
76-BD-2	HQ	24400	23480	. –	90 ⁰	145
76-BD-3	HQ	24488	23500	00	89 ⁰	168
76-BD-4	HQ	25525	23370		90 ⁰	107
76-BD-5	BQ	24700	23275	0900	60 ⁰	203
76-BD-6	BQ	24650	23290	-	90 ⁰	153
76-BD-7	BQ	24550	23325	270 ⁰	60 ⁰	150
76-BD-8	BQ	24250	23315	-	900	126
76-BD-9	BQ	24250	23440	_ ·	900	126

METALLURGICAL TESTS

The test results are presented in the attached report by A. H. Ross & Associates. The recommended process consists of crushing and grinding at the mine site, pipeline slurry movement to the mill on the North Thompson River and uranium recovery using the atmospheric leach system, solvent extraction and precipitation. The presence of fluorite in the ore will require some modifications to the flow sheet.

Additional test work to refine the flow sheet design and cost estimates is planned.

A.T. Annor .

A. T. Avison

22 March 1977 Toronto, Ontario.

1

2.2

CONSOLIDATED REXSPAR MINERALS & CHEMICALS LIMITED

٠,

Evaluations Pertaining To General Flowsheet Selection For Uranium Ore Processing

K. C. Swider, P. Eng. W.V. Barker, P. Eng. in j Coyne, P. Eng. R.

Toronto, Ontario, Canada February, 1977

TABLE OF CONTENTS

		Page Number
1.	Introduction	1-1
	1.1 Preface	1-1
	1.2 Premises	1-2
	1.3 Reports of Metallurgical Test Work	1-2
	1.4 Flowsheet	1-3
2.	Summary	2-1
	2.1 Qualifications	2-1
	2.2 Metallurgy	2-2
	2.3 Estimated Production, Capital and Operating	
	Costs	2-4
	2.4 Comments	2-5
3.	Metallurgical Test Data	3-1
	3.1 Ore Sample	3-1
	3.2 Grinding	3-1
	3.3 Leaching	3–5
	3.4 Behaviour of Fluoride	3-21
4.	Grinding and Leaching Comparative Costs	4-1
5.	Estimates of Capital Costs	5-1
	5.1 Basis of Preparation	5-1
	5.2 Summary of Capital Costs	5-2
6.	Estimates of Operating Costs	6-1
	6.1 Basis of Preparation	6-1
	6.2 Summary of Operating Costs	6-2
	6.3 Cost per Pound of U ₃ 0 ₈ Recovered	6-2

Attachments

1. Ontario Research Foundation Letter Report

2. Colorado School of Mines Research Institute Letter Report

1. INTRODUCTION

1 - 1

1.1 Preface

The A.H. Ross & Associates report of June 13, 1975, "A Preliminary Economic Study of Uranium Recovery from Rexspar Ore", recommended that a metallurgical test program be undertaken if further consideration were to be given to this project. Consolidated Rexspar Minerals & Chemicals Limited subsequently requested A.H. Ross & Associates to proceed with laboratory test work to develop the preferred flowsheet.

Investigations on samples from the Rexspar property had been carried out from 1951 to 1958. All prior metallurgical reports were reviewed in detail in preparation for undertaking the laboratory studies. Authors of the early reports had concluded that the Rexspar ore is not amenable to conventional uranium processing techniques.

The 1952-1955 laboratory work demonstrated extractions exceeding 90% of the $U_{3}O_{8}$ present by leaching in an autoclave at $140^{\circ}C$ using water and oxygen as the only reagents. Based on that work, the 1956-1958 investigations developed a flowsheet for pressure acid leaching in towers. The studies were not sufficiently complete to permit design of a commercial plant with confidence. Knowledge of suitable materials of construction and of ability to meet fluoride specifications in yellow cake was lacking.

The metallurgical testwork performed in 1976 by Lakefield Research of Canada and by Colorado School of Mines Research Institute under the direction of A.H. Ross & Associates had the objective of establishing the preferred flowsheet based on uranium and other hydrometallurgical plant experience in the intervening years. Sample material was drill

core from three holes drilled in 1975 and nine holes drilled in 1976. Results of the testwork to date allow approximate evaluation of the economics of a recommended flowsheet. Additional work will be required to develop design criteria and to define suitable materials of construction.

1.2 Premises

The capital and operating costs are based upon recovery from an average ore assay of 0.075% U₃0₈, 20% pyrite and 3% fluoride. The flowsheet has been premised on the production of a low sodium yellow cake which would be acceptable feed material at all North American uranium refineries.

The cost's have been developed on the basis of processing 365,000 tons per year of ore (1,000 TPD). The capital cost estimate does not include any facilities associated with ore mining activities, haulage, tailings disposal area, access roads, electrical power supply, warehouse, maintenance shops, change house, administration office, townsite or employee housing. The operating costs do not include chemicals for treatment of tailings to forestall future acid drainage. All costs are premised on present monetary values without any allowance for inflation.

1.3 Reports of Metallurgical Test Work

A formal report on laboratory results has not yet been prepared by Lakefield Research of Canada Limited. Laboratory test data sheets which report details of grinding and leaching have been used for this preliminary evaluation. Results of work by two other laboratories are presented in the following letter reports:

October 19, 1976 Ontario Research Foundation Re: Bond Grindability Test on Consolidated Rexspar Ore.

January 14, 1977 Colorado School of Mines Research Institute Re: Preliminary Studies on Solvent Extraction of Fluoride Bearing Uranium Leach Solution.

1.4 Flowsheet

, **1**

.....

The generalized schematic flowsheet is shown on the following page.

2.2 <u>Metallurgy</u>

2.2.1 Autoclave Leaching with Oxygen

The Rexspar uranium ore samples used for the laboratory testwork reported in Section 3 of this report had high sulfide, fluoride and acid neutralizing components, similar to those reported from earlier work by others. These ore characteristics make the use of any of the conventional uranium extraction processes unaconomic. However, it had been found that high uranium recovery could be achieved at temperatures of $130 - 140^{\circ}$ C without any reagents other than 10 psia of oxygen which provides the oxidant and which also reacts with the sulfides to produce the acid needed for leaching.

The testwork at Lakefield Research of Canada Limited in 1976 confirmed effective extraction of 93 to 95% of the uranium in an autoclave under those conditions. However, some of the ore samples responded less readily than others, and required the presence of some acid to initiate the reaction.

The autoclave process, while chemically feasible, presents great difficulty in equipment design to meet the severe conditions of erosion and corrosion in the presence of sulfuric and hydrofluoric acid at 140°C. An extensive pilot scale development would be needed before the autoclave leach process could be recommended for use in the commercial plant.

2.2.2 Atmospheric Leaching with Oxygen

A range of temperature below 100°C for leaching was explored. It was found that extractions of 90 to 92% of the uranium could be achieved at atmospheric pressure, if about 100 pounds of sulfuric acid per ton of ore and some ferric sulfate were present.

A. H. ROSS & ASSOCIATES

These conditions, while more severe than customarily used in the uranium industry, are potentially within the range of some elastomer linings now available for steel vessels.

The atmospheric leach system is recommended for the extraction of uranium from Rexspar ore. A program of testwork based on this preferred leach system is required to develop the information for the detailed design of the commercial plant.

2.2.3 The Fluoride Problem

. 1

Fluoride dissolved from the ore results in about 1 to 4 gpl in the pregnant solutions from the batch leach tests, and thus there is more fluoride than uranium present. The early testwork had indicated that high fluoride content in yellowcake resulted when precipitation from ion exchange eluate was practiced. The alternative of solvent extraction with a tertiary amine was explored in the current test program. It is indicated that the fluoride specification can be met when yellowcake is produced by precipitation from strip solution from an amine solvent extraction process. The fluoride, however, must be scrubbed from the organic phase with an alkaline solution, which increases the reagent consumption in the process.

2.4 Comments

- 2.4.1 While the testwork reported herein has confirmed the superior economics predicted for high temperature pressure leaching of Rexspar uranium ore by previous investigators, adoption of that process route entails a pioneering effort, with considerable risk of equipment failure. The long term pilot plant testing for development of suitable construction materials, which would be required, is probably not warranted for an ore deposit of the size of Rexspar.
 - Approximately four months more laboratory work will be required to develop the design data required for the 90°C atmospheric leach system. Cost estimates in the subsequent sections of this report are based on a selected set of leach conditions which should be confirmed or altered somewhat for optimization. Thickening and filtration testwork remain to be done. Design criteria for solvent extraction and precipitation must be developed.
- 2.4.2 The leach temperature of 90°C is higher than that considered acceptable by the industry for an economic life of the rubber linings currently used in steel pachuca tanks. The successful operation of the leach described herein will depend on finding a lining material and method of application to steel which will serve well enough to permit uninterrupted operation of the leach with reasonable maintenance. There is reason to think that chlorobutyl rubber would provide such service. Major elastomer manufacturers may have other potential materials. A test program under commercial conditions is planned on this important aspect of the project.
- 2.4.3 The costs of chemicals for leaching are relatively high because of the presence of pyrite and of acid consuming minerals including carbonates. Commercially pure oxygen has been found

A. H. ROSS & ASSOCIATES

to be effective as the oxidant and by reacting with the pyrite, generates some of the acid required for the leach. Examination of the economics of oxygen supply shows it is advantageous to purchase an oxygen plant, to be installed at the millsite, rather than to purchase liquid oxygen, to be trucked 600 or 700 miles from the nearest commercial sources. However, the sulfuric acid is available by tank car from several suppliers and is assumed to be purchased.

2.4.4 In the proposed solvent extraction circuit, it is expected that most of the fluoride will transfer from the pregnant solution to the solvent, and that it will not be stripped from the solvent with the uranium. An alkaline scrub of the solvent to remove the fluoride will probably be required. It is assumed that soda ash will be used, and the sodium fluoride solution obtained will be directed to the tailings neutralization system, where the fluoride will be precipitated as calcium fluoride.

2.4.5 Tailings neutralization as practiced at the Elliot Lake uranium mills is included in the flowsheet. However, the unusually large amount of pyrite remaining in the tailings has environmental implications which involve considerations of ultimate rehabilitation of the tailings area. There has been no provision for these costs in this report.

2.2

A. H. ROSS & ASSOCIATES

3. METALLURGICAL TEST DATA

3.1 Ore Sample

The sample material consisted of diamond drill core obtained during 1975 and 1976 from the Rexspar property near Birch Island, British Columbia. In February 1976 work was begun at Lakefield Research of Canada Limited on 1975 drill core, which was identified as one hole in each of ore zones A, B and BD. The core sent to Lakefield Research of Canada Limited in July and August 1976 was identified as originating in four holes in zone A, two holes in zone B and four holes in zone BD. A composite sample of each hole was prepared taking half of each section in the ore zone. After analysis of the hole composites, approximately 200 kg of a master composite sample was prepared for the leach test program. The master composite consisted of 47% zone A ore, 14% zone B ore and 39% zone BD ore, in accordance with the 1975 ore estimates by Kilborn Engineering Limited. All holes were represented, but slightly less sample taken from the higher grade holes in order to hold the average calculated U_3O_8 content down to 1.5 lb. per ton. Analyses of drill core are given in Table I.

3.2 Grinding

Leach test work was carried out at grinds ranging from 40% to 95% minus 200 mesh. Variations in grind within that range does not appear to have a significant effect on rate of autoclave leaching. Effect of grind on atmospheric leach with oxygen requires further study, as there are indications of improved extraction rates with finer grinds. However, several successful atmospheric leaches were done on ore ground to the following screen analyses.

Screen Size, Tyler Mesh	65	100	150	200	270	400
Cumulative % by Wt. Passing	96	87	76	61	53	41

PRODENTI

Sample U ₃ 0 ₈ Pe S F C02 S102 A1203 Ca0 Mg 0 Cu Zone B 75-1 0.065 16.5 15.0 4.6 0.66 22.0 7.2 8.6 7.2 0.059 Zone A 75-2 0.071 11.9 10.6 4.0 3.52 27.4 9.5 9.6 8.1 0.058 Zone BD 75-4 0.062 11.4 10.3 3.43 3.23 49.3 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 7 7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 7 7.3 0.020 Comp. 75-124 0.062 11.8 12.3 2.0 0.05 7 7.3 0.020 Comp.3 0.100 11.8 10.8 3.2 0.15 7 7 3.1 0.60 76-B-1 0.052]	Percent				
Zone B 75-1 0.065 16.5 15.0 4.6 0.66 22.0 7.2 8.6 7.2 0.059 Zone A 75-2 0.071 11.9 10.6 4.0 3.52 27.4 9.5 9.6 8.1 0.058 Zone BD 75-4 0.040 5.1 4.4 1.3 3.23 49.3 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 76-A-1 0.181 14.2 14.4 3.9 0.07 76-A-1 0.181 14.2 14.4 3.9 0.07 76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-B-1 76-B-1 1.05 1.3.1 4.0 3.10 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-B-1 7.5 1.6 1.1 1.0.7 1.	Sample	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Fe	S 	F 	<u> </u>	<u>Si0</u> 2	A1203	Ca0	Mg O	Cu
Zone A 75-2 0.071 11.9 10.6 4.0 3.52 27.4 9.5 9.6 8.1 0.058 Zone BD 75-4 0.040 5.1 4.4 1.3 3.23 49.3 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 14.6 5.7 2.3 0.020 76-A-1 0.181 14.2 14.4 3.9 0.07 15 16 15 3.8 1.89 16 16 16 16 16 16 16 16 16 16 16	Zone B 75-1	0.065	16.5	15.0	4.6	0.66	22 0	× 7 2	8.6	· 7 9	0.059
Zone BD 75-4 0.040 5.1 4.4 1.3 3.23 49.3 14.6 5.7 2.3 0.020 Comp. 75-124 0.062 11.4 10.3 3.4 3.20 76-A-1 0.181 14.2 14.4 3.9 0.07 76-A-2 0.072 9.7 9.9 3.6 2.14 76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70 <	Zone A 75-2	0.071	11 9	10.6	4.0	3 52	22.0	0.5	0.6	7.2 8 1	0.059
Comp. 75-124 0.062 11.4 10.3 3.4 3.20 76-A-1 0.181 14.2 14.4 3.9 0.07 76-A-2 0.072 9.7 9.9 3.6 2.14 76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	Zone BD 75-4	0.040	5.1	4.4	1.3	3.23	49.3	14.6	5.7	2.3	0.030
76-A-1 0.181 14.2 14.4 3.9 0.07 76-A-2 0.072 9.7 9.9 3.6 2.14 76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	Comp. 75-124	0.062	11.4	10.3	3.4	3.20	-7-5	14.0	5.7	2.5	0.020
76-A-2 0.072 9.7 9.9 3.6 2.14 76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master 5.4 10.3 2.9 0.70	76-A-1	0.181	14.2	14.4	3.9	0.07					
76-A-3 0.100 11.8 10.8 3.2 0.15 76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master	76-A-2	0.072	9.7	9.9	3.6	2.14					
76-A-5 0.092 11.8 12.3 2.0 0.05 76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Master 0.081 11.3 1.40	76-A-3	0.100	11.8	10.8	3.2	0.15			-		
76-B-1 0.052 13.6 11.5 3.8 1.89 76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	76-A-5	0.092	11.8	12.3	2.0	0.05				•	
76-B-2 0.063 12.5 7.7 3.1 0.60 76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	76-B-1	0.052	13.6	11.5	3.8	1.89			-		
76-BD-2 0.068 10.2 8.3 2.4 0.85 76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master 0.078 12.1 10.3 2.9 0.70	76-B-2	0.063	12.5	7.7	3.1	0.60		:	`		·
76-BD-3 0.094 15.6 13.1 4.0 3.10 76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master 0.078 12.1 10.3 2.9 0.70	76-BD-2	0.068	10.2	8.3	2.4 ;	0.85		:			
76-BD-4 0.065 14.4 13.2 4.1 2.67 Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	76-BD-3	0.094	15.6	13.1	4.0	3.10					
Composite 1 0.074 10.5 1.20 Composite 2 0.081 11.3 1.40 Master 0.078 12.1 10.3 2.9 0.70	76-BD-4	0.065	14.4	13.2	4.1	2.67					
Composite 2 0.081 11.3 1.40 Master Composite 0.078 12.1 10.3 2.9 0.70	Composite 1	0.074		10.5		1.20					
Master Composite 0.078 12.1 10.3 2.9 0.70	Composite 2	0.081		11.3		1.40					
	Master Composite	0.078	12.1	10.3	2.9	0.70					

w

N

ţ

Data on the ore Work Index was gathered in a number of ways. These were:

A standard Bond Work Index determination was made by the Ontario Research Foundation. The results were reported in their letter of October 19, 1976, Attachment I. The test was by dry ball milling to pass 100 mesh with 250% circulating load. The presence of micaceous material in the oversize meant that an excessive number of cycles was required to reach equilibrium, resulting in an unusually high work index of 18.7.

By comparative open circuit wet grinding in a batch laboratory ball mill against a reference ore of known work index at Lakefield Research of Canada Limited.

By use of the Mergan mill manufactured by Outokumpu OY. This unit measures the net energy consumption, during grinding at constant mill speed, by a pendulum type torque meter with recording of DC current.

The various results obtained by these methods are tabulated below for a grinding circuit product size of 60% passing 200 mesh:

Sample	Work Index
76-B-1	18.7
76-A-1	8.2
76-A-2	9.1
76-A-3	8.7
76-A-5	9.2
76-B-1	9.7
76-B-2	8.4
76-BD-2	8.8
76-BD-3	8.3
76-BD-4	8.3
Master Composite	9.9
Hole 76-B-1	8.3
Master Composite	7.5
	Sample 76-B-1 76-A-1 76-A-2 76-A-3 76-A-5 76-B-1 76-B-2 76-BD-2 76-BD-3 76-BD-3 76-BD-4 Master Composite Hole 76-B-1 Master Composite

3 - 4

index of 10.

ځ

...?

3.3 Leaching

3.3.1 General

. 1

The leaching test work involved two separate programs. The first was to verify that good extraction of uranium could be achieved reliably by continuous leaching in autoclaves. The second program sought conditions for a successful leach at lower temperature, which would allow the use of proven materials of construction and conventional equipment.

3 - 5

The test work has demonstrated two effective leaching alternatives:

Autoclave leaching with oxygen and little or no external source of acid, at 140° C for 4 to 6 hours.

Atmospheric leaching with oxygen and 50 to 100 pounds of sulfuric acid per ton of ore, at 90° C for 24 to 48 hours.

On the assumption that equipment for both leach systems can be designed at a practical cost, an approximate preliminary evaluation of economics favours autoclave leaching, principally because of better extraction. The comparison is shown in Table XVII. However extensive inquiry to suppliers has so far not revealed any materials which will withstand the severe erosive and corrosive conditions of the autoclave leach. The atmospheric leach at 90° C is still a difficult application as the temperature is 10 to 15 degrees higher than the usual limit for rubber lined steel. However, some recent experience in other industries with chlorobutyl rubber lined steel at 90 to 100° C indicates that it may be suitable for this application.

The consumption of acid by Rexspar ore is quite high. It was measured by agitating samples in dilute sulfuric acid at 400 lb acid per ton of ore for 4 hours at ambient temperature. The filtrate from the slurry was then back titrated with sodium hydroxide to pH 2.5, to permit calculation of net acid consumption. The figures, given in Table II do not indicate any direct relationship between acid consumption and carbonate content.

•		• •
Sample	co ₂ x	Acid Consumption 1b/ton
7.6-A-1	0.07	268
76-A-2	2.14	308
76-A-3	0.15	260
76-A-5	0.05	256
76-B-1	1.89	274
76-B-2	0.60	276
76-BD-4	2.67	266

TABLE II ACID CONSUMPTION

3.3.2 Autoclave Leach With Oxygen

Composite samples, representing all the 1976 drill holes combined, responded well to autogenous autoclave leaching. The method has been described in numerous reports of previous metallurgical test work on samples from the Rexspar property at Birch Island. Reference is made particularly to "Laboratory Investigation on Treatment of Rexspar Uranium Ore", Final Report by J. Halpern Department of Mining and Metallurgy, University of British Columbia, August 15, 1955. The results of all five tests done on 1976 composite samples at Lakefield Research were in the range of 93 - 95% extraction in 6 hours at 140°C, with 10 psi oxygen overpressure and no addition of acid, as shown in Table III. It can be seen that grind had little influence in the range 41 to 67% minus 200 mesh.

3 - 6

A. H. ROSS & ASSOCIATES

3 - 7

TABLE III AUTOCLAVE LEACH TESTS ON COMPOSITE SAMPLES 1976 DRILLING

...

Test Conditions:

·...

ч. **ц**

50% solids in water, no acid addition Temperature 140°C Oxygen overpressure 10 psi

ASSOCIATES

ROSS &

Leach % U₃0₈ Grind % Time % Test No. Sample - 200 mesh in hr. Head Residue Extraction A33 Composite 1 6 0.074 0.005 93 67 A34 Composite 2 65 0.081 0.005 94 6 1 A36 Master Comp. 61 2 0.078 0.024 69 4 0.007 91 0.004 6 95 A38 54 2 0.078 0.021 73 Master Comp. 4 800.0 90 6 0.004 95 A37 Master Comp. 41 0.078 0.032 59 2 0.008 90 6 0.005 94

Because some samples from the 1975 drilling program had failed to respond to autogenous autoclave leaching under the same conditions, it was decided to check the behaviour of ore samples from each of the 1976 drill holes for individual differences. There appeared to be some correlation to carbonate content in 1975 drill core samples, but work with 1976 drill core has not confirmed this. The results are given in Table IV.

The autoclave leach, with autogenous generation of the sulfuric acid leachant by reaction of pyrite with oxygen and water, was effective in all but test A24 on hole 76-A-2. However, as shown in Table V, excellent uranium extraction was obtained from the same sample in test A25 by initiating the reaction with an addition of 50 pounds of sulfuric acid per ton of ore. Extending the leach time to 12 hours in test A30 was also effective indicating the problem is simply a delay in the development of free acid in the solution, which may be related to unusually high reactivity of oxides or carbonates in the sample.

Table VI shows the poor extraction of U_{308}^{0} from some high C_{2}^{0} samples without the use of acid. The samples are from 1975 drill core, except sample 4452 from hole 76-BD-4. Table VIII shows conditions for good extractions by use of acid in the autoclave even if the C_{2}^{0} content is high. High C_{2}^{0} sample 4444 in this table is from hole 76-BD-3; in this case good extraction was achieved without acid.

There does not seem to be any necessity for selective mining to avoid the problem, as it may only be necessary to provide for occasional use of acid in the pressure leach if autoclave leaching is adopted.

TABLE IV AUTOCLAVE LEACH TESTS, INDIVIDUAL DRILL HOLES 1976

<u>.</u> .

Test Conditions:

50% solids in water, no acid addition Temperature 140°C Oxygen overpressure 10 psi

ť		% U ₃	08	
Test No.	Hole No.	Head	Residue	% Extraction
A20	76-A-1	0.181	0.005	97
A21	76-A-3	0.100	0.006	94
A22	76-A-5	0.092	0.003	97
A23	76-B-2	0.063	0.007	89
A24	76-A-2	0.072	0.064	11
A26	76-B-1	0.052	0.004	92
A27	76-BD-4	0.065	0.004	94
A28	76-BD-3	0.094	0.003	97
A29	76-BD-2	0.068	0.003	96

TABLE V AUTOCLAVE LEACH TESTS, SAMPLE FROM HOLE NO. 76-A-2

Test Conditions:

50% solids in water Temperature 140°C Oxygen overpressure 10 psi

...

Test No.	Hole No.	Time	Acid Added	% U	3 ⁰ 8	
		<u>hr</u>	<u>lb/ton</u>	Head	Residue	% Extraction
A24	76-A-2	6	0	0.072	0.064	11
A25	76-A-2	6	50	0.072	0.002	97
A30	76-A-2	12	0	0.072	0.011	85

Test No.	Sample	[%] 2	% Solids	Acid <u>lb/ton</u>	Temp. C	Oxygen psi	Final PH	% Extraction
A1	75-124	3.2	50	0	150	10	5.9	17
A7	75-124	3.2	50	Note	150	30	3.0	21
lla	75-124	3.2	50	0	140	10	7.0	0
115	75-124	3.2	30	0	150	30	7.0	0
13a	75-2	3.5	50	0	140	10	7.0	0
14a	75-4	3.2	50	0	140	10	7.0	0
14Ъ	75-4	3.2	50	50	140	10	7.0	0
16	75-124	3.2	50	0	150	10	6.3	0
				_				
132 Note: TA	4452 5 gpl Fe ⁺ ABLE VII A	2.8 ++ as a UTOCLAY	50 sulfate, ac /E LEACH TE	0 cidified to ESTS - HIGH	140 prevent 1 U ₃ 0 ₈ Ex	10 hydroly TRACTION	5.8 sis S IN 6 HC	DURS
132 Note: TA 	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u>	2.8 ++ as a UTOCLAY % CO ₂	50 sulfate, ac VE LEACH TE X Solids	0 cidified to ESTS - HIGH Acid <u>lb/ton</u>	140 prevent $U_{3}O_{8} EX$ <u>Temp. C</u>	10 hydroly TRACTION Oxygen psi	5.8 sis S IN 6 HC Final pHE	10 DURS Z Extraction
.32 lote: <u>T/</u> est <u>No.</u>	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124	2.8 $4 + as s$ $UTOCLAV$ $\frac{\%}{CO_2}$ 3.2	50 sulfate, ac VE LEACH TH X Solids 10	0 cidified to ESTS - HIGH Acid <u>lb/ton</u> Note	140 prevent $U_3 O_8 EX$ $\frac{Temp}{C}$ 150	10 hydroly TRACTION Oxygen psi 30	5.8 sis S IN 6 HC Final <u>pH</u> E 1.2	10 DURS % Extraction 97
.32 lote: <u>TA</u> est <u>No.</u> 4 11c	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124 75-124	2.8 3.2	50 sulfate, ac VE LEACH TE X Solids 10 30	0 sidified to STS - HIGE Acid <u>lb/ton</u> Note 25	140 prevent $U_3 O_8 EX$ <u>Temp.</u> <u>C</u> 150 150	10 hydroly TRACTION Oxygen psi 30 30	5.8 sis S IN 6 HC Final <u>pH</u> <u>E</u> 1.2 1.7	10 DURS X Extraction 97 84
.32 Note: <u>TA</u> Sest <u>No.</u> 4 11c 12	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124 75-124 75-1	2.8 ++ as a UTOCLAY $\frac{%}{CO_2}$ 3.2 3.2 0.7	50 sulfate, ac VE LEACH TE X Solids 10 30 50	0 cidified to ESTS - HIGH Acid <u>lb/ton</u> Note 25 0	140 prevent U ₃ 0 ₈ EX <u>Temp.</u> <u>C</u> 150 150 140	10 hydroly TRACTION Oxygen psi 30 30 10	5.8 sis S IN 6 HC Final <u>pH</u> <u>F</u> 1.2 1.7 1.1	10 DURS <u>xtraction</u> 97 84 94 .
.32 Note: <u>TA</u> Sest <u>No.</u> 4 11c 12 13b	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124 75-124 75-1 75-2	2.8 ++ as a UTOCLAV % CO ₂ 3.2 3.2 3.2 0.7 3.5	50 sulfate, ac JE LEACH TE <u>%</u> <u>Solids</u> 10 30 50 50	0 Eidified to ESTS - HIGE Acid <u>lb/ton</u> Note 25 0 100	140 prevent 1 U ₃ 0 ₈ EX <u>Jemp.</u> 150 150 140 140	10 hydroly TRACTION Oxygen psi 30 30 10 10	5.8 sis S IN 6 HC <u>Final</u> <u>pH</u> <u>F</u> 1.2 1.7 1.1 1.3	10 DURS X Extraction 97 84 94 88
132 Note: <u>TA</u> Sest <u>No.</u> 4 11c 12 13b 18	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124 75-124 75-1 75-2 75-4	2.8 ++ as a UTOCLAN % CO ₂ 3.2 3.2 3.2 0.7 3.5 3.2	50 sulfate, ac VE LEACH TE <u>X</u> <u>Solids</u> 10 30 50 50 50	0 sidified to ESTS - HIGE Acid <u>lb/ton</u> Note 25 0 100 150	140 prevent U ₃ 0 ₈ EX <u>Temp.</u> 150 150 140 140 140	10 hydroly TRACTION Oxygen psi 30 30 10 10 10	5.8 sis S IN 6 HC Final <u>pH</u> E 1.2 1.7 1.1 1.3 1.3	10 DURS % % % % % % % % % % % % % % % % % % %
A32 Note: TA Cest No. A4 A11c A12 A13b A18 A31	4452 5 gpl Fe ⁺ ABLE VII A <u>Sample</u> 75-124 75-124 75-1 75-2 75-4 4444	2.8 ++ as a UTOCLAY % CO ₂ 3.2 3.2 3.2 0.7 3.5 3.2 3.9	50 sulfate, ac VE LEACH TE <u>X</u> <u>Solids</u> 10 30 50 50 50 50 50	0 sidified to ESTS - HIGH Acid <u>lb/ton</u> Note 25 0 100 150 0	140 prevent U ₃ 0 ₈ EX <u>Temp.</u> 150 150 140 140 140 140 140	10 hydroly TRACTION Oxygen psi 30 30 10 10 10 10 10	5.8 sis S IN 6 HC Final pH E 1.2 1.7 1.1 1.3 1.3 1.1	10 DURS X Extraction 97 84 94 88 95 95 96

....

3.3.3 Atmospheric Leach With Oxygen

Although excellent extraction of uranium is readily achieved by autoclave leaching with oxygen, no successful plant of this kind is known. Hence a lower temperature alternative to autoclave autogenous leaching was sought. The metallurgical studies on Rexspar ore in 1951 to 1958 had not used the temperature range of 75° to 100° C for leaching, and it was decided to explore the possibilities in this range.

Preliminary tests on 1975 drill core reported in Table VIII showed that an initial addition of sulfuric acid and ferric sulfate would start the reaction between oxygen and pyrite at 90° C. Sufficient acid was then generated autogenously to leach $U_{3}O_{8}$ at a reasonable rate. In these early tests the slurry density was difficult to control because of high temperature, long leach time and excessive evaporation from the stirred flask.

To simulate oxygen introduction at depth in pachucas under atmospheric pressure, apparatus was constructed to carry out leach tests by diffusing commercial oxygen into the bottom of two inch diameter by 20 foot high pyrex glass columns. Slurry density and temperature control were good, the columns being electrically heated by current through resistance wire wound around the glass.

A. H. ROSS & ASSOCIATES

TABLE VIII PRELIMINARY LEACH TESTS WITH OXYGEN AT ATMOSPHERIC PRESSURE

Conditions:

Mechanical agitation in three-neck flask, oxygen bubbling into the pulp at 90° C. Poor control of slurry density.

		ey.	Acid	Fatter	Time	% Ŭ ₃ 0	8
Test No.	Sample	Solids	<u>lb/ton</u>	gpl	<u>hr</u>	Head	Residue
A2	75-124	50	0	0	96	0.062	0.056
A5	75-124	10	115	5	96	0.062	0.008
A9	75-124	25	135	5	48	0.062	0.011
A15	75-1	40	60	2	24	0.065	0.021
					48	.•	0.010

Results of the preliminary atmospheric leach tests in the glass column given in Table IX indicated autogenous leaching was possible at 90° C on some samples at least, and that excellent extraction could be obtained in 48 hours, using 100 lb acid per ton of ore.

Exploration of the effect of increasing acid additions is detailed in Table X. Failure to achieve a satisfactory leach at 80° C is shown by data in Table XI. Tests reported in Table XII indicated there was no particular advantage in raising the leach temperature a few degrees, approaching 95°C. Agitation with air, rather than pure oxygen was found to be less effective, as reported in Table XIII.

The series of tests reported in Table XIV was based on the information developed from all the other series. These tests confirmed that high extractions can be achieved consistently at 90° C under a variety of conditions of pulp density and fineness of grind with retention times of 48 hours or less. The conditions for Test C27, 90° C, 30% solids and a grind of 61% minus 200 mesh were chosen for the capital and operating cost estimates for this report.

ASSOCIATES

TABLE IX PRELIMINARY ATMOSPHERIC LEACH TESTS WITH OXYGEN IN THE GLASS COLUMN

Conditions:

44

Slurry at 50% solids agitated by oxygen introduced at a depth of 12 feet, temperature held at $90^{\circ}C$

ASSOCIATES

2055

Test		Grind	Acid	Fe ⁺⁺⁺	Time	Final	₩ U.(3) 8
<u>No.</u>	Sample ·	<u>%-200m</u>	<u>lb/ton</u>	<u>gpl</u>	hr	pH	Head	Residue
Al7a	75-2	(-35m)	0	0	7	6.7	0.071	0.071
А17Ъ	75-2	(-65m)	40	2	7	6.0	0.071	0.067
A19	75-1	(-65m)	40	0	б	2.5	0,065	0.042
C1	76-A-1	74	50	Ö	48	1.4	0.181	0.011
C2	76 - A→5	64	50	0	24	1.7	0.092	0.024
C3	76-A-5	64	0	0	24	1.9	0.092	0.020
C4	76-A-5	64	0	0	54	1.3	0.092	0.016
C5	76-A-2	68	0	0	96	7.1	0.072	0.072
C6	Comp 1	67	100	0	48	1.3	0.074	0.005

TABLE X COLUMN LEACH TESTS WITH INCREASING ADDITIONS OF ACID

1

Conditions:

Master composite sample at 50% solids, agitated with oxygen, temperature held at 90° C.

Test <u>No</u>	Grind <u>%-200m</u>	Acid <u>lb/ton</u>	Fe ⁺⁺⁺	Time <u>hr</u>	Final pH	Residue % U ₃ 0 ₈	% Extraction
C8	61	50	0	88	1.8	0.035	55
C7	61	100	0	48	1.5	0.037	53
}		, ,		72	1.6	0.019	. 76
				88	1.4	0.008	90
C12	61	100	Note 1	48	1.8	0.018	77
	,			72	1.5	0.017	78
	. 3			90	1.5	0.007	91
C20	61	100	Note 2	48	2.1	0.025	68
				74	1.6	0.016	79
				90	1.3	0.007	91
C11	61	150	0	90	1.5	0.018	77
C21	83	150	0	48	2.1	0.024	69
				74	1.4	0.010	87
				90	1.3	0.005	94
C17	61	200	0	90	2.0	0.027	65
C18	61	300	0	44	1.7	0.025	68
				70	1.5	0.007	91
an a				90	1.4	0.006	92
C22	83	300	0	48	1.6	0.006	92
				74	1.4	0.005	94
				90	1.3	0.005	94
C19	61	300	5	25	1.3	0.007	91
				48	1.6	0.005	94
				74	1.4	0.004	95
				90	1.4	0.004	95

Notes

.

(1) Leachant included 50% of recycled C7 pregnant solution

(2) Leachant included 50% of recycled C12 pregnant solution

A. H. ROSS & ASSOCIATES

		TABLE X	I ATMOSPH	ERIC LEAC	HING W	ITH OXY	GEN AT 80°C			
1 ¹		Conditi	ons:				• • · · · · ·			
Slurry of master composite sample at 50% solid										
		agitated by oxygen.temperature held at 80°C								
			-					* *		
Test No	Grind %-200m	Acid 1b/ton	Fe ⁺⁺⁺ _gpl	Time hr	Fina PH	1	Residue % U ₃ 0 ₈	% Extraction		
C9	61	50	0	88	1.7		0.063	19		
C10	61 ''	100	0	88	2.0		0.037	53		
C14	61	100	Note	90	1.7		0.047	40		
C31	61	100	10	47	1.8		0.049	37		
C32	83	100	10	47	1.7		0.052	33		
<u>Note</u> :	Leachant :	included 5	0% of rec	ycled ClO) pregna	ant sol	ution.			
	مد				• •		1.	· · · · · ·		
	TA	BLE XII CO	LUMN LEAC	HING AT T	EMP ERA	TURES H	IGHER THAN	90 [°] C		
		Condition	ns:					1		
		1	Master com	nposite s	ample a	at 50%	solids, agit	ated by oxygen		
		-					, - <u>-</u>			
Test	Grind	Acid	Fett	Temp.	Time	Final	Kesidue % U ₂ O2	%		
<u>NO</u>	<u>%-200m</u>	$\frac{1b}{ton}$	_gpi_	<u> </u>	<u>hr</u>	PH	38	Extraction		
C24	83	100	2	91-93	12	1.6	0.032	59		
					24	1.8	0.019	76		
				٠.	36	1.4	0.010	87		
			-		48	1.6	0.007	91		
C23	61	100	5	93-94	12	1.9	0.039	50		
					24	1.9	0.030	62		
					36	1.6	0.023	71		
					48	1.8	0.016	79		
C16	61	250	0	93-94	44	1.9	0.035	55		
					70	1.8	0.015	81		
			·	••	90	1.5	0.006	92		
C15	61	150	0	94-95	44	2.1	0.032	59		
					70	1.7	0.021	73		
			•		00	1 4	0.005	94		

3 - 15

. .

A. H. ROSS & ASSOCIATES

TABLE XIII OXIDATION WITH AIR COMPARED WITH OXYGEN AT ATMOSPHERIC PRESSURE

Master composite sample 100 lb/ton acid and 5 gpl Fe⁺⁺⁺ initially Temperature 90°C

Residue % U308 Grind % Time Test % -200 mesh <u>Solids</u> Numbers <u>hr</u> Oxygen Air C26,C29 61 .40 12 0.013 0.033 24 0.009 0.026 36 0.008 0.033 48 0.008 0.032 C25,C30 83 50 12 0.033 0.037 0.015 24 0.035 36 800.0 0.032 48 0.007 0.030

Conditions:

TABLE XIV ATMOSPHERIC LEACH WITH OXYGEN - DEFINITIVE TESTS

Conditions:

Master composite sample at 50% solids, agitated by oxygen, temperature held at 90° C

Test No	Grind <u>% -200m</u>	% Solids	Acid 1b/ton	Fe ⁺⁺⁺ _gpl_	Time <u>hr</u>	Residue 2 U ₃ 08	% Extraction
C25	83	50	100	5	12	0.033	58
					24	0.015	81
					36	0.008	90
•			• •	•	48	0.007	91
C26	61	40	100	5	12	0.013	83
					24	0.009	88
				-	36	0.008	90
					48	0.008	90
C27	61	30	100	5	12	0.010	87
					24	0.008	90
					36	0.007	91
1	•• •				48	0.006	92
C28	61	40	50	5	12	0.042	46
				.*	24	0.038	51
					36	0.027	65
					48	0.011	86
C33	61	50	100	10	12	0.011	86
					24	0.008	90
	4				36	0.007	91
					48	0.007	91
C34	95	50	100	5	12	0.022	72
			;	÷	24	0.008	90
					36	0.006	92
			÷		48	0.007	91
	•		•				

A. H. ROSS & ASSOCIATES

3.3.4 Chemicals Consumed in Leaching

3.3.4.1 Sulfuric Acid

Results of tests on composite samples show that all the acid required for leaching can be autogenously generated at 140° C by reaction of oxygen and pyrite. Hence in cost comparisons of operating conditions presented in Section 4, no cost is charged for purchased sulfuric acid for autoclave leaching with oxygen.

In the atmospheric leach with oxygen at 90° C, the test results indicate that an initial addition of sulfuric acid is required. The optimum amount of acid has not been clearly established; good extractions are obtained with an initial addition of 100 lb acid per ton of ore, but 50 lb per ton is not enough. In the proposed flowsheet, recycle of pregnant solution provides 20 lb acid per ton of ore, and the required ferric sulfate. Hence an addition of 80 lb acid per ton is the amount used in the operating cost estimates in Section 6.

3.3.4.2 Oxygen

Oxygen consumption during leaching has not yet been measured directly. However, oxygen consumption has been estimated on the basis of a calculation of the amount required to oxidize the pyrite to yield ferric iron, elemental sulfur and sulfate. From several tests which gave high extractions, leach residues were analyzed for residual sulfide and for elemental sulfur. The amount of sulfate formed was obtained from the relationship to the original total sulfur in the head sample. Using this data, the amount of reacted oxygen was calculated. The results for autoclave leaching at 140° C are given in Table XV and for atmospheric leaching in Table XVI. The average for the five autoclave tests is 100 lb oxygen per ton of ore. For the purpose of this report the oxygen requirement is estimated to be 110 lb per ton at 140° C. For comparison, J. Halpern's final report on Rexspar tests from University of British Columbia, August 15, 1955, and Mines Branch report SR-475/57 state that 60 lb of sulfur per ton of ore needs to go to sulfate, which would require about 120 lb oxygen per ton.

The average for the six atmospheric leaching tests is 44 lb oxygen per ton of ore. For the purpose of this report, the oxygen requirement is estimated to be 50 lb per ton at 90° C.

	TABLE XV CALCULA	TED OXYGEN CO	NSUMPTI	ON IN AUTOCLAV	E LEACHING	<u>at 140°c</u>
			t x		· .	• · ·
	U ₃ 0 ₈	Sulfide S	<u>ulfur</u>	Oxidized S i	<u>n Residue</u>	Calculated
Test <u>No.</u>	Extraction %	Ore Re 1b/ton 1b	sidue /ton	Elemental S 1b/ton	Sulfate S	Oxygen Used
A33	93	210	128	12	70	136
A34	94	226	163	14	49	97
A36	95	206	151	26	29	64
A37	94	206	143	23	40	84
A38	95	206	139	4	63	119
			i.		Averag	e 100

	TABLE XVI	CALCULATED OXYGEN CONS	UMPTION IN ATMOSPHERIC LEACH	ING AT 90°C
	UJOg	Sulfide Sulfur	Oxidized S in Residue	Calculated
÷.	J U Fytractiv	on Ore Pecidue	Flomental S. Sulfate S	Oxygen Used

Test No.	Extraction	Ore 1b/ton	Residue 1b/ton	Elemental S <u>lb/ton</u>	Sulfate S <u>lb/ton</u>	<u>lb/ton</u>
C18	92	206	175	13	18	38
C19	95	206	178	4	24	46
C22	. 94	206	175	10	21	43
C24	91	206	173	12	21	44
C27	92	206	169	12	25	51
C33	´ 91	206	180	° 6	20	40
				1	Average	e 44

3 - 20

:::

:

(

3.4 Behaviour of Fluoride

3.4.1 Mines Branch Reports on Rexspar, 1957 and 1958

The following comments are quoted:

"Precipitates made so far from Rexspar ion exchange eluate have shown high fluoride content, well above specifications". Report IR-236/57, page 2.

3 - 21

"Final product of 80% U₃0₈ - the fluoride content was well over specification. Alternative precipitation methods did not reduce fluoride to an acceptable level." "Four yellow cakes at 1.5, 1.09, 0.94 and 0.5% fluoride". Report SR-476/57 page 4 and page 36.

"SX triisooctylamine; precipitates 0.15, 0.16, 0.11 and 0.14% F." Report IR 58-86, page 16.

"SX by alamine - only the fluorine assay is somewhat higher than the specification limit of 0.10 part F per 100 parts U_{308} . The assay indicates 0.104". Report IR-58-178, page 5.

3.4.2 Lakefield Research Shake-out Test

Autoclave leach test A22 on hole composite 76-A-5 resulted in 97% $U_3^{0}O_8$ extraction and 3.23 gpl F in the pregnant solution. Heads had 0.092% $U_3^{0}O_8$ and 2.04% F.

Column leach test Cl on hole composite 76-A-l resulted in 94% U_3O_8 extraction and 2.40 gpl F in the pregnant solution. Heads had 0.181% U_3O_8 and 3.87% F.

Pregnant solution samples from these two leach tests were used for shake-out solvent extraction tests, in which the fluoride behaviour was followed.

Organic extraction solution $(2\frac{1}{2}%$ Alamine 336, $2\frac{1}{2}%$ isodecanol in Shell 140 kerosene) was sulfated with dilute sulfuric acid at pH 1.5. The organic was then neutralized with 130 gpl solution of ammonium sulfate at pH 4.

The solvent was contacted several times with fresh portions of a pregnant solution to saturate the solvent with $U_3^{0}{}_8$. The solvent was then stripped with the ammonium sulfate solution. Yellow cake was precipitated from the strip solution by addition of ammonium hydroxide to pH 7. Strip solution and filtrate from yellow cake were analyzed for fluoride. Each was found to contain less than 0.03 gpl fluoride, the limit of detection by the method used.

3.4.3 Comments from General Mills Chemicals, Inc.

÷.

The use of General Mills' tertiary amine in a solvent extraction process to recover uranium from leach solutions containing approximately 0.5 gpl $U_{3}O_{8}$ and up to 4 gpl fluoride was discussed with Mr. Wayne Jensen. He stated that as fluoride is an anion which attaches very strongly to the tertiary amine, it will almost all go into the organic. With a strip solution on the acid side, fluoride will not strip with uranium; only a few parts per million fluoride would be expected in the strip solution. To keep the fluoride from building up in the organic, there should be a scrub stage, using ammonium hydroxide or sodium carbonate which will strip the fluoride from the solvent. Mr. Jensen knew of no experience in the uranium industry with as much fluoride in leach solution.

3.4.4 Colorado School of Mines Research Institute Studies

Five gallons of undiluted pregnant solution from leach tests at Lakefield Research of Canada Limited was sent to CSMRI for scoping tests on the extent of fluoride transfer to a yellow cake product produced by the amine solvent extraction process. The CSMRI letter on this study is Attachment 2 to this report. It concludes that "yellow cake product prepared by conventional amine extraction (Alamine 336) and $(NH_4)_2 SO_4 + NH_3$ stripping indicated no serious contamination problems due to fluoride".

The leach solution analysis is given as 0.46 gpl U_30_8 and 1.26 gpl F. The yellow cake product was found to contain only 0.006 % F.

It should be noted that solution scrubbing applied in the CSMRI work was with neutral $(NH_4)_2SO_4$ solution, whereas a basic solution should be used to remove fluoride from the solvent.

In the course of the CSMRI testwork, it was noted that certain difficulties with extraction emulsions and yellow cake product slurry filtration were found to occur.

No design data was expected or obtained from the preliminary SX testwork.
HO HESEARCH FOUNDATION

ATTACHMENT 1

1

-

. .

A. H. ROSS & ASSOCIATES

ONTARIO RESEARCH FOUNDATION

... IERIDAN PARK, MISSISSAUGA, ONTARIO, CANADA, 15K 183

PHONE (416) 222-4111 OR 279-9771 * TWX 610-492-2524

October 19, 1976

A.H. Ross & Associates 1706-80 Richmond Street West Toronto, Ontario M5H 2A4

Attention: Mr. W.V. Barker

Dear Sir:

Re: Bond Grindability Test on Consolidated Rexspar Ore Our Investigation No. MP-76363

We have completed the Bond dry grindability test on the sample of Consolidated Rexspar ore received from Lakefield Research and found the work index to be 18.71. Initial tests were done at 200 mesh but there was a build-up of micaceous material in the oversize which meant that equilibrium was not reached after 12 cycles. After a conversation with Mr. Bergman at Allis Chalmers Research Centre, Milwaukee, further tests were done at 100 mesh which resulted in near equilibrium conditions being reached.

The work index was calculated according to the Bond formula:

$$F_{1} = \frac{44.5}{P_{1}^{0.23} \times G_{p}R^{0.82} \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}}\right)}$$

where:	Wi	83	Work index	8 70	18.71
	р 1	H	Screen size tested in microns		147
	G _p R	8	Net grams of undersize produced per revolution of test mill	-	1.033
	P	***	Screen size in microns which 80% of test product passes	5 2	102
	F	H	Screen size in microns which 80% of test feed passes		1540

THIS PEPORT RELATES ONLY TO THE PARTICULAR INSTRUMENT, MATERIAL, OR OTHER SUBJECT REFERRED TO IN IT. NO REPRESENTATION IS MADE THAT SIMILAR ARTICLES WILL EE OF LIKE QUALITY, WITHOUT THE PRIOR WRITTEN CONSENT OF THE ONTARIO RESEARCH FOUNDATION, NO PUBLICATION IN WHCLE OR IN PART OF THE TEXT OR SUBSTANCE OF THIS REPORT SHALL BE MADE, NOR SHALL THE NAME OF THE ONTARIO RESEARCH FOUNDATION BE USED IN ANY WAY IN CONNECTION WITH THE SALE. OFFERING OR ADVERTISING OF ANY ARTICLE OR PRODUCT, ANY TESTING, INSPECTION OR INVESTIGATION OF THE INSTRUMENTS, MATERIALS OR OTHER SUBJECTS PERFORMED BY ONTARIO RESEARCH FOUNDATION WILL BE CONDUCTED IN ACCORDANCE WITH THE BEST TECHNICAL STANDARDS OF THE ONTARIO RESEARCH FOUNDATION BUT NEITHER IT NOR ITS EMPLOYEES SHALL BE RESPONSIBLE FOR ANY LOSS OR DAMAGE RESULTING DIRECTLY OR INDIRECTLY FROM ANY DEFAULT, ERROR OR OMISSION. Investigation No. MP-76363

The power consumption was calculated according to the Bond formula:

$$W = \frac{10 \text{ Wi}}{\sqrt{P}} - \frac{10 \text{ Wi}}{\sqrt{F}}$$

where:

kilowatt hours to grind one short ton
 of material to pass test screen size
 with 250% circulating load
 = 13.76

The structures of the test feed and test product are listed on the attached table.

If you have any questions regarding this or any other matter please do not hesitate to contact us.

Yours very truly,

P.D. R. Maltby

P.D.R. Maltby, P.Eng. Assistant Director Department of Metallurgy

PDRM:jc

Investigation No. MP-76363

	с,	
Mesh Size	Wt. %	% Passing
8	8.1	91.9
10	10.4	81.5
14	10.4	71.1
20	12.2	58.9
28	10.9	48.0
35	8.8	39.2
48	6.8	32.4
65	5.7	26.7
100	5.5	21.2
150	2.8	18.4
200	3.6	14.8
270	2.8	12.0
-270	12.0	_ ·
Head	100.0	•

STRUCTURE OF -6 MESH BOND MILL FEED

STRUCTURE OF BOND MILL PRODUCT (-100 MESH).

Mesh Size	Wt. %	% Passing
150	19.5	80.5
200	18.3	62.2
270	12.7	49.5
400	22.3	2.7.2
-400	27.2	
Head	100.0	•
and the second	and the second	

Colorado School of Mines Research Institute

January 14, 1977

P.O. BOX 112 • GOLDEN, COLORADO 80401 PHONE (303) 279-2581

CSMRI Project A61146

Mr. W. V. Barker Project Engineer A. H. Ross & Associates 1706-80 Richmond Street West Toronto, Ontario M5H 2T4 Canada

Dear Mr. Barker:

The purpose of this letter is to report the results of our preliminary work on a fluoride bearing uranium leach solution. The objectives of this study have been to evaluate the extent of fluoride transfer to a yellow cake product produced by the amine SX process, and to determine if solvent poisoning problems exist.

The sample received for this study consisted of 18 1 of solution (in polyethylene), received on November 24, 1976. The scope of the work was limited to bench scale tests designed to evaluate and correct a suspected fluoride transfer and product contamination problem.

The results of this work indicate that fluoride contamination of the product was not a problem. However, certain difficulties with extraction emulsions and difficulties in obtaining efficient uranium stripping, were found to occur.

SUMMARY AND CONCLUSIONS

The following statements are based on the results of preliminary studies with a fluoride bearing uranium leach solution.

- 1. Yellow cake product prepared by conventional amine extraction (Alamine 336) and $(NH_4)_2SO_4 + NH_3$ stripping indicated no serious contamination problems due to fluoride. Fluoride contamination which occurred in a product prepared from unscrubbed organic was 0.006%F.
- 2. The effect of scrubbing loaded organic prior to stripping and product recovery was marginal and apparently unnecessary. The best yellow cake product obtained via this route $(5g/1 (NH_4)_2SO_4$ solution scrubbing) contained 0.003% F.

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE

Mr. W. V. Barker Page 2 January 14, 1977

- 3. Extraction contacts with the sponsor's feed solution resulted in nearly stable emulsions on the 3rd contact, under contact conditions of A/O=2. An emission spectrographic scan of organic free emulsion solids showed Mg to be major, with strong traces of Al, Ca, Si, Cu, Fe and Mn. Anionic components could not be analyzed due to limited material.
- 4. The results from cyclic loading and stripping contacts indicated that there were no definite interferences preventing uranium extraction.
- 5. Extracted uranium appeared to strip from the organic with more difficulty than has been experienced in other work. Causitive factors in this have not been determined.
- 6. The yellow cake product slurry was dispersed at pH 7.5-8.0, and was relatively difficult to recover by direct filtration.

RECOMMENDATIONS

Although efficient U_3O_8 stripping has been shown to be somewhat of a problem, a much greater problem is expected from emulsion formation during extraction.

It is recommended that work be done in the area of pretreatment of the solution, as a possible means of reducing this emulsion tendency. This type of study might be approached by the trial use of fluoride precipitating agents (CaO or RE_2O_3) or metals such as silica or titanium which might form more stable fluorides in solution.

RESULTS AND DISCUSSION

Solution Sample Description and Analysis

The solution used for this study was supplied by Lakefield Research of Canada Limited. Five gals. of solution was received November 24, 1976. The "as received" solution was very clear, with a light yellowish green color. The pH of the solution was 1.9 and had the following composition.

PROPERTY FILE

Mr. W. V. Barker Page 3 January 14, 1977

Solution Analysis				
Elements	g/1			
F	1.26			
A1	1.6			
Fe	1.4			
Mg	5.6			
Mo	<0.002			
v	0.015			
SiO ₂	0.5			
U ₃ O8	0.46			

A small amount of precipitate had settled to the bottom of the 5 gal. container due to standing.

Behavior of Uranium and Fluoride During Process Steps

The objective of this portion of the study was to determine the extent of an assumed F transfer to yellow cake products, and to simultaneously scope variable scrubbing solutions to alleviate this potential condition.

The test sequence was designed to apply multiple contact loading of a single volume of organic (using the solution sample submitted), and to divide the loaded organic into 3 equal parts. The organic volume fractions were then treated separately with a control sample, to study the effects of 2 separate scrubbing solutions. Following the scrubbing contacts each organic volume was stripped using $(NH_4)_2$ SO₄+NH₃ (pH 4.2-4.4) and yellow cake precipitated with NH₄OH at pH 7.5-8.0, filtered, dried and analyzed for F. Raffinates, scrub solutions and filtrates were also analyzed for F in order to obtain a balance.

Test Conditions and Procedure

The test conditions used in each of these steps are listed as follows.

Organic Composition

Alamine 336	2.5 V/V%
Isodecanol	2.5 V/V%
Kerosine (SacoSol 175)	95.0 V/V%

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE

Mr. W. V. Barker Page 4 January 14, 1977

Extra	action	Con	diti	ons
and the second division of the second divisio	And we also have a state of the second	And some days and some statements are statements and the	and the second sec	and the second sec

A/O Ratio Contact time Temperature No. of contacts Loaded organic

2 min. ambient 3 2.452 g/l U₃O₈

1

2

Scrubbing Conditions

O/A ratio Contact time Temperature No. of contacts Scrub solutions

2 min. ambient 2 (a) 5 g/l

- (a) $5 g/1 (NH_4)_2 SO_4 (pH 5.5)$
- (b) 50 g/1 Na_2SO_4 (pH set to 1.5
 - with H_2SO_4)

U₃O₈ Stripping Conditions

Scrubbed organic O/A ratio Contact time Temperature No. of contacts Strip solution 2.4 g/l U₃O₈ 3.5 10 min. ambient 1 130 g/l (NH₄)₂SO₄ plus NH₄OH to pH 4.2-4.4

The organic was preconditioned by sulfating prior to extraction contacts. Following each step in the process the organic phases were clarified by filtration, prior to further treatment.

Behavior of Uranium During Process Steps

The results of this work, as concerned with U_3O_8 transfer during the process steps, is listed as follows.

Solution	Analysis, g/lU ₃ O8
Aqueous feed	0.46
Loaded organic	2.448
Combined extraction raff	0.025

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE

Mr. W.	v.	Barker
Page 5		•
January	14,	1977

Solution	Analysis, $g/1 U_3O_8$	
Scrubbed organics;		
non-scrubbed		
$(NH_4)_2$ SO ₄ scrubbed	possible trace (NA)	
Na ₂ SO ₄ scrubbed	possible trace (NA)	•
Stripped organics;		
non-scrubbed	0.17	
$(NH_4)_2SO_4$ scrubbed	0.10	
Na,SO ₄ scrubbed	0.095	

From this, it can be seen that U_3O_8 stripping was unusually difficult. Under the test conditions used we would normally expect to obtain 0.005 to 0.030 g/l U₃O₈ in the stripped organic, with a very high percentage of U₃O₈ stripped. Compared to this, our testwork has shown U₃O₈ stripping in the order of 93%.

Another problem noted in this work was the behavior of yellow cake during filtration. All of the individual strip concentrate solutions produced a dispersed or colloidal type precipitate when raised to pH 7.5-8.0 with NH₄OH. Filtration of these solids required several passes through a No. 42 Whatman paper, and even then left a slightly cloudy filtrate. On standing between filtrations the solids did settle reasonably well, but never became flocculated well enough for efficient filtration. No flocculants were used in this step because normal yellow cake solids behave well on a buchner filter and this particular problem was unexpected.

Emulsion Problems During Extraction

Of additional concern in the extraction step was the pronounced tendency toward emulsion formation. It is recognized that an extraction contact at an A/O of 2 enhances emulsion tendencies. However, in this work, the repeated extraction contacts (3) led to more severe emulsion problems with each subsequent contact. Emulsion in the first two contacts were broken almost completely by heating in a water bath. The third contact resulted in such a stable emulsion that centrifuging was required, yielding approximately 90% of the components as clear liquid. The paste-like fraction recovered was further treated to remove aqueous soluble components as well as organic, and the residue analyzed by semiquantitative emission spectrograph. Mr. W. V. Barker Page 6 January 14, 1977

Elements found to be present in this analysis were as follows:

			% B	y Range	(1)	
Element		Ţ	TX	TXX	m	M
Al			•.	x		•.
Cu				x		
Fe				x		
РЬ			x			
Mn	, '			x		
Ni		x				
Si				x		
Ti		x				
U			x	n an		
v		x				
Zn			x	•		
Ca	<u>,</u>			x .		
Mg					2	2

 $\frac{1}{M} = +10\%$ m = 1-10% TXX = 0.1-1% TX = 0.01-0.1% T = 0.001-0.01%

The small quantity of solids recovered made it impossible to analyze for elements such as P, F and SO_4 .

Behavior of Fluoride During Process Steps

The behavior of fluoride during the process steps is shown by the following balance data.

Fluoride Balance

Fluoride Input; Aqueous feed; 6.2 l aq. feed x 1.26 g/l = 7.812 g

Calculated Fluoride Loading;

Total Raffinate 6.2 1 x 1.24 g/l = 7.689 g Calc. L.O. 1.1 I x 0.112 g/l = 0.123 g

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE

Mr. W. V. Barker Page 7 January 14, 1977

Fluoride Out;	e e tije	
Scrub aqueous;	• •	•
Total $(NH_4)_2SO_4$ scrub	$0.731 \times 3.9 \text{ ppm} =$	0.0028 g
Total Na ₂ SO ₄ scrub	$0.731 \times 3.0 \text{ ppm} =$	0.0022 g
Yellow cake filtrate plus wa	ash;	· '
Non-scrubbed org.	0.115 1 x 87.0 ppm	= 0.0100 g
$(NH_4)_2SO_4$ scrubbed org.	0.129 1 x 29.0 ppm	= 0.0037 g
Na_2SO_4 scrubbed org.	0.153 1 x 26.0 ppm	= 0.0040 g
Yellow cake product;		. *
Non-scrubbed org.	\approx 1.2 g x 0.006%	0.00007 g
$(NH_4)_2SO_4$ scrubbed org.	\approx 1.2 g x 0.004%	0.00005 g
Na_2SO_4 scrubbed org.	\approx 1.2 g x 0.003%	0.00004 g
Total	Fout	0.02286 g

The preceding fluoride balance is based on the assumption of full recovery of components through the process steps. From this data it can be seen that a balance cannot be obtained between the calculated loaded organic and the sum of fluoride found in various solutions and solids. This indicates that the difference in fluoride was a part of the insoluble solids occurring in extraction emulsion solids.

The preceding data also shows that fluoride contamination did not transfer through extraction and into the final yellow cake product.

Cyclic U₃O₈ Loading-Stripping Tests

As a part of this work program it was of importance to determine if soluble components in the feed might tend to irreverably load, and eventually poison the organic.

For this study a series of extraction contacts (by shakeout) and stripping contacts (by agitated beaker contacts) were conducted in a sequential manner. The organic was loaded in the first 5 tests by 5 contacts at an O/A of 1.3. In a final test the organic was loaded by 8 contacts at an O/A of 1.3. All stripping contacts were conducted at an O/A of 3.0, with the addition of NH₄OH to a pH of 4.2-4.4 in a 10-minute contact period. The initial U₃O₈ barren strip solution (containing 130 g/l (NH₄)₂SO₄) was re-used for each of 6 cycles.

Following loading and stripping contacts the clarified organic was analyzed for U_3O_8 .

Mr. W.	v.	Barker
Page 8		•
January	14,	1977

The res	ults of these tests a:	re listed as follows:	
Cycle No.	Loaded Organic g/l U3Og	Stripped Organic g/1U308	Calc. Cumulative Strip Concentrate g/1 U ₃ O8
1	1.48	0.03	4.35
2	1.48	0.018	10.20
3	1.48	0.016	16.05
4	. 1.48	0.016	21.90
5	1.48	0.06	27.58
6	2.30	0.32	35.50
		0.09(1)	••

1/ double stripped using fresh U₃O₈ barren solution for second contact

Based on this data, there appears to be no serious difficulty in recycling the organic and obtaining reasonable strip efficiency, up to a U_3O_8 concentration of ≈ 30 g/l in the strip concentrate. A double strip of cycle 6 organic returned the barren organic to 0.09 g/l, which was the approximate average for earlier stripping tests. The 0.09 g/l U_3O_8 value in the barren organic is only slightly higher than normal, and cannot be predicted as a definite poisoning problem.

We have stopped work on this project with 5 l of the original feed solution on hand. This quantity was held against possible future work.

Please let me know if you have any questions concerning this report.

Very truly yours,

H. D. Peterson Project Manager Chemical Division

/vsc

PROPERTY Cons. Rexspar		HOLE NO. 76-A-1
LA- 24, 628 N.	DIP -90 ⁰	HOLE STARTED JULY 14/76
DEP. 24, 970 E.	AZIMUTH	HOLE FINISHED JULY 15/76
elev. 4000'	LOGGED BY Dr. E, L. Evans	LENGTH 70' SIZE HQ

FOOTAGE	DESCRIPTION	SAMPLE NO.	LENGTH	FROM	то	U ₃ 0 ₈
	XEXXXX XXXX					
0 - 4.0	Overburden	068	5'	33	38	0.320
4.0-18.0	Trachyte-Weathered Moderate radioactivity core recovery < 50%	069	5'	38	43	0.085
18.0-41.5	Trachyte-dark, schistose with occasional fragment of lighter coloned material. 20% pyrite moderately high radioactivity 23.4-26.0 Coarse fragmental light blue in color. Highly radioactive	070 071 072 073	5' 5' 5' 10'	43 48 53 58	48 53 58 68	0.071 0.016 0.023 0.011
41.5-70.0	Trachyte-Coarse fragmental with light colored fragments 10% pyrite. One inch veinlet of chalcopyrite at 59.2'	064 065 066		0 18 23 28	18 23 28 33	0.008 0.178 0.200
	End of Hole	007		20	55	0.235
\sim						
	· · · · · · · · · · · · · · · · · · ·					

PROPERTY Cons. Rexspar		HOLE NO. 76-A-2
LAT 24,880 N.	DIP90 ^Q	HOLE STARTED JULY 15/76
DEP. 24, 970 E	AZIMUTH	HOLE FINISHED JULY 17/76
ELEV. 4000'	LOGGED BY Dr. E. L. Evans	LENGTH 165' SIZE HQ

FOOTAGE	DESCRIPTION	SAMPLE NO.	LENGTH	FROM	то	^U 3 ⁰ 8	
0 - 1 6 - 8 8 - 31.7	XXXXX XXX Overburden Trachyte-rust stained and broken Trachyte-grey, schistose-schecticity at 10 ⁰ to core 5% pyrite	021 022 023 024 025	5' 5' 3.8' 4 9'	30 35 40 45 48 8	35 40 45 48.8 53 7	0.005 0.001 0.003 0.005 0.074	
31.7-48.8	Trachyte-altered schistose, dark grey 30% pyrite much rust in spots	026 027 028	4.3' 5'	53.7 58	58 63 68	0.064	
48.8-57.5	Trachyte-less altered, less schistose some large, light coloured feldspar fragments, Fluorite seam 3/4" at 49.1	029 030 031 032 033	5' 5' 5' 5' 5'	68 73 78 83 88	73 78 83 88 92	0.037 0.113 0.026 0.023 0.015	
57.5-73.0	Trachyte-dark to medium grey fresh with patches of/ Bedding about 10% to core 5-10% pyrite but with patches up to 30%. Rock has a bluish cart which may be due to fine fluorite	034 035 036 037 038 039 040 041 042	- ទំឆំ ឆំ	92 98 103 108 113 118 123 128 133	98 103 108 113 118 123 128 133 138	0.020 0.032 0.143 0.100 0.103 0.083 0.056 0.084 0.023	
73-78	Trachyte-dark grey to black with roughly 35% pyrite and high radioactivity 76.8-78 high fluorite content	043 044 045	5' 5'	138 143 148	143 148 153	0.007 0.015 0.024	
78-88	Trachyte-massive with moderate pyrite and fluorite	046	5' 5'	153	158	0.034	
88-92.5	Trachyte-grey, massive with white feldspar crystals 90-92.5 high fluorite content						
92.5-103	Trachyte-grey and highly fractured moderate pyrite						
103-118	Trachyte-dark schistose-some large light coloured fragments in chlorite matrix. Highly radioactive 25% pyrite 117.9-118.5 abundant fluorite						
118-152.5	Trachyte-coarser fragmental, somewhat schictose 15% pyrite						
152.5-157.3	Trachyte-finer texture and darker in color from 155 moderate pyrite			<i></i>			
157 165	Trachyte-light grey with large fragments. Pyrite in patches and streaks.						
	End of Hole						

PROPERTY Cons. Rexspar		HOLE NO. 76-A-3
Lr 25,000 N.	DIP -89 ⁰	HOLE STARTED JULY 10/76
DEP. 25,115 E.	аzімuth <u>270⁰</u>	HOLE FINISHED JULY 11/76
3,930 ELEV.	LOGGED BY Dr. E. L. Evans	LENGTH 73' SIZE HQ

FOOTAGE	DESCRIPTION	SAMPLE NO.	LENGTH	FROM	то	U ₃ 0 ₈	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
0 - 8 8 - 9.5 9.5- 2.3	Overburden Trachyte - weathered Trachyte 1/2" X 1 1/2" fragments schictose with very heavy pyrite - grey	095 096 097 098 099	5' 5' 5' 5'	8 13 18 23 28	13 18 23 28 33	0.130 0.180 0.082 0.102 0.083	
23 -33.4	Trachyte - highly altered - bleached and schictose in spots, micaceous with moderately heavy pyrite	100 101 102	5' 5' 5'	33 38 43	38 43 48	0.011 0.023 0.023	
33.4-50	Trachyte - coarse fragmental with abundant pyrite in interstices	103 104	5' 5'	48 53	53 58	0.061 0.094	
50 -73	Trachyte-dark with coarse fragments, abundant pyrite and patches of fluorite. Highly radioactive 56-58 possible fault 72-73 fault zone	105 106 107	5' 5' 5'	58 63 68	63 68 73	0.074 0.100 0.020	:
\sim	End of Hole			х. Х.			
				-			
				1			

•

property Cons. Rexspar		HOLE NO. 76-A-4
LAT 25,050 N.	DIP -90 ⁰	HOLE STARTED JULY 12/76
DEP. 25,000 E.	AZIMUTH	HOLE FINISHED JULY 13/76
elev. 3950'	LOGGED BY Dr. E. L. Evans	LENGTH 118' SIZE HQ

FOOTAGE	DESCRIPTION	SAMPLE NO.	LENGTH	FROM	то	^U 3 ⁰ 8	

0 - 8 8 - 21	Overburden Trachyte-massive light blue with fragments up to 1/2" Core fractured - 1% pyrite	074 075 076	3' 3' 4' 5'	18 21 24 28	21 24 28 33	0.028 0.005 0.013 0.015	
21- 24	Trachyte-dark colored tuff with low radioactivity	078 079 080	5' 5' 5'	33 38 43	38 43 48	0.012 0.009 0.013	
24- 60	Trachyte-grey,even grained with pea sized fragments Moderate pyrite some fluorite in spots, moderate radioactivity	081 082 083 084 085 086	5' 5' 5' 5' 5'	48 53 58 63 68 73	53 58 63 68 73 78	0.008 0.010 0.014 0.014 0.021 0.016	
60-92	Trachyte-similar to above except for coarse fractur- ing at 45° to core axis and much rust stainery 70- 71.5 altered and rust stained - possible fault	087 088 089 090 091 092	5' 5' 5' 5' 5'	78 83 88 93 98 103	83 88 93 98 103 108	0.014 0.023 0.052 0.039 0.019 0.008	
92-118	Trachyte-light grey, highly fractured - 5% pyrite 92-93 possible fault 99-101 malachite stain on fractures	093 094	5' 5'	108 113	113 118	0.007 0.007	
	End of Hole						
							·
~							

PROPERTY Cons. Rexspar		HOLE NO. 76-A-5
Lo- 25,110 N.	DIP -98 ⁰	HOLE STARTED JULY 9/76
DEP. 25,110 E.	AZIMUTH 270 ⁰	HOLE FINISHED JULY 10/76
ELEV. 3,900'	LOGGED BY Dr. E. L. Evans	LENGTH 73' SIZE HQ

FOOTAGE	DESCRIPTION	SAMPLE NO.	LENGTH	FROM	то	U_08
0 - 10 10 - 13 13 - 23	XXXX XXX Overburden Trachyte-weathered Trachyte - heavy pyrite mineralization slightly schictose and highly radioactive	108 109 110 111 112	3' 5' 5' 5' 5'	10 13 18 23 28	13 18 23 28 33	0.052 0.091 0.196 0.023 0.018
23 - 36.6	Trachyte - fine grained, grey cut by quartz veinlets moderate pyrite	113 114 115 116	5' 5' 5'	33 38 43 48	38 43 48 53	0.058 0.067 0.080 0.097
36.6-48	Trachyte-coarse agglomerate with abundant pyrite	117 118 119	5' 5' 5'	40 53 58 63	53 58 63 68	0.135 0.090 0.045
48 - 73	Trachyte-medium agglomerate abundant pyrite, some fluorite 63-73' less pyrite	120	5'	68 68	73	0.010
\sim	End of Hole					

. •

PROPERTY Cons. Rexspar		HOLE NO. 76-B-1
LAT25,400 N	DIP -89 ⁰	HOLE STARTED July 19/76
DEP. 23,850 E	AZIMUTH 00	HOLE FINISHED July 20/76
ELEV	LOGGED BYE. L. Evans	LENGTH133

FOOTAGE		DESCRIPTION	SAMPLE NO.	LENGTH	From	То	
		From To					
0-8'	Casing						
8'-16'	Trachite:	grey fractured and weathered. Shows spotted alteration.	4401	5'	38' 43'	43'	
16'-37'5"	Trachite:	grey, spotted with about 3% pyrite.	4403	5' 5'	48' 53'	53' 58'	
37'5"-46'5	? Trachite:	dark grey fragmental with about 5% pyrite.	4405 4406 4407	5' 5' 5'	58' 63' 68'	63' 68' 73'	
46'5"-58'3	' Trachite:	very dark, tuffacious with up to 25% pyrite.	4408 4409 4410	5' 5' 5'	73' 78' 83'	78' 83' 88'	
58'3"-64'	Trachite:	Massive grey fragmental, $60'-62'$ schisted and altered with schistosity at 50° to core.	4411 4412 4413	5' 5' 5'	88' 93' 98'	93' 98' 103'	
64'-93'	Trachite:	dark grey, altered and schistose. About 15% pyrite, schistosity 50% to core at 68' - 30% pyrite.			2		
93'-103'	Trachite:	light grey core badly broken.					
103'-113'	Trachite:	light grey with dark sections to chlorite in breccia matrix.					
113'-126'	Trachite:	dark grey fragmental, slightly schistose - 10% pyrite.					
126 '-1 33'	Trachite:	light grey with dark fractured sec- tions.					
133'	End of Hol	đ					
		a Na ang ang ang ang ang ang ang ang ang an					

.

PROPERTY Cons. Rexspar		HOLE NO. 76-8-2			
La- 25,360 N.	dip 90 ⁰	HOLE STARTED JULY 18/76			
DEP. 23,930 E.,	AZIMUTH	HOLE FINISHED JULY 19/76			
ELEV. 3,850	LOGGED BY Dr. E. L. Evans	LENGTH 93' SIZE HQ			

FOOTAGE	DESCRIPTION		SAMPLE NO.	LENGTH	FROM	то	^U 3 ⁰ 8	
0 - 8 8 - 40	Overburden XXXXX Trachyte-light grey, fairly massive but cut by fractures 5% pyrite, sparce fluorite	XXX	047 048 049 050	5' 5' 5' 5'	13 18 23 28	18 23 28 33	0.004 0.012 0.005 0.009	
40-46	Trachyte-coarse fragmental dark grey chloritic 10% pyrite 46-46.8 fault		051 052 053	5' 5' 5'	33 38 43	38 43 48	0.005 0.008 0.071	
46-61.4	Trachyte-dark, coarse grained with abundant muscovite and fairly heavy pyrite very strong radioactivity		054 055 056 058	5' 5' 5'	48 53 58 63	53 58 63 68	0.059 0.071 0.050 0.052	
61.4-70.1	Trachyte-dark, schictose-15% pyrite strong radioactivity		059 060 061	5' 5' 5'	68 73 78	73 78 83	0.026 0.006 0.005	
70.1-93	Trachyte-coarse agglomerate 15% pyrite, some muscovite moderate radioactivity sparce fluorite		062 063	5' 5'	83 88	88 93	0.006 0.011	;
	End of Hole.							
					•			
	•							
				. 1				
	. · · ·							
					, nt			
		·						
	· .							

.

PROPERTY Cons Rexspar		HOLE NO.
LAT 24,350 N 7' W of map	DIP -90 ⁰	HOLE STARTED AUGUST 5/76
DEP. 23,355 E location	AZIMUTH	HOLE FINISHED August 8/76
ELEV. 3450	LOGGED BY E. L. Evans	LENGTH 97' SIZE HQ

FOOTAGE		DESCRIPTION	SAMPLE NO.	LENGTH	From	То	
		From To					
0-14'	Casing						
14'-49'	Trachite: Rus str gre	sted and altered with limonite reaking. Some short sections of ay fragmental.	4414	5'	23	28	
49'-66'	Trachite: gre tec	ey fragmental with fragments orien- l at 80° to core.					
66 '- 78'	Trachite: ^{-/} gre ate	eenish-grey agglomerate with elong- ed fragments at 60° to core.					
78'-84'	Trachite: gre flo	een, fine grained. Patch of ourite at 80.					1
84 _ 7'	Trachite: blu pyr pyr	e and green fragmental, moderate tite to 89', thereafter heavy tite.					
97'	End of Hole	•					
<u> </u>							

. -

PROPERTY	Cons Rexspar		HOLE NO. 76-BD-2
LAT. 24,400	N	DIP90 ⁰	HOLE STARTED July 28/76
DE 23,480	Ε	AZIMUTH	HOLE FINISHED July 30/76
ELEV. 3430)	LOGGED BY E. L. Evans	LENGTH145' SIZE HQ

FOOTAGE		DESCRIPTION	SAMPLE NO.	LENGTH	From	То		
		From To						
0-27	Casing							
27-29	Trachite:	badly broken and weathered	4415	3'	30	33		
29–50	Trachite:	grey green with abundant fractures, weak pyrite.	4417 4418	51	38 43	38 43 48		
50-77	Trachite:	Dark grey fragmented with 25% pyrite. Fluorite patch at 63'. Schistosity at 60° to core.	4419 4420 4421 4422	5' 5' 5'	48 53 58 63	53 58 63 68		
77-107	Trachite:	Mixed dark grey and light grey frag- mental. Schistose 25% pyrite.	4423 4424 4425 4426	5' 5' 5'	68 73 78 83	73 78 83 88		i
107-127	Trachite:	grey, fine grained with occassional seam of massive pyrite. 120-124 contains patches of quartz. Fluorite at 119'8".	4427 4428 4429 4430	5' 5' 5' 5'	88 93 120 125	93 98 125 130		
127-133	Trachite:	light grey, fine grained and schistose with minor pyrite	4431 4432 4433	5' 5' 5'	130 135 140	135 140 145		
133-145	Trachite:	dark grey, fine grained with 15% pyrite						
145	End of Hol	e						
			P	ROF	ERT	Y FI	LE	

PROPERTY	CONSOLIDATED	REXSPAR
		•••••••••••••••••••••••••••••••••••••••

-

.

PROPERTY	CUNSULIDATED REASPAR		HOLE	E NO. /6-BD	-3
LA-	24,500N)12' S of this	DIP -89°	HOLI	E STARTED	July 30/76
DEP.	23,500E)Location	AZIMUTH	HOLI	E FINISHED	August 3/76
ELEV.		LOGGED BY E. I	Evans	_{ютн} 168'	SIZE HQ

FOOTAGE		DESCRIPTION	SAMPLE NO.	LENGTH	From	То	
0-36 36-78	Casing Trachite:	From To light colored, schistose and broken with abundant lemonite	4434 4435 4436 4437 4437	5' 5' 5'	80 85 90 95	85 90 95 100	
78-80	Trachite:	light green schistose	4439	5' 5'	105	110	•
80-103.5	Trachite:	dark grey with about 20% pyrite and some fluorite to 88'	4441 4442 4443	5' 5' 5'	115 120 125	120 125 130	
103.5-138	Trachite:	dark, schistose fragmental with up to 80% pyrite	4444 4445 4446	5' 5' 5'	130 135 140	135 140 145	
138-163	Trachite:	dark, schistose with some large fragments and fluorite. Pyrite about 50%	4447 4448 4449	5' 5' 5'	145 150 155	150 155 160	;
1 168	Trachite:	light grey to green with about 25% pyrite	4450	3'	160	163	
	END OF HOL	E			;		
		. · · · · · · · · ·					
\sim							

.

.

.

-

PROPERTY	CONSOLIDATED REXSPAR			HOLE NO. 76-BD-4
LA ⁻	24525N	DIP	-90°	HOLE STARTED AUGUST 3/76
DEP.	23370E	AZIMUTH		HOLE FINISHED AUGUST 5/76
ELEV.	3450	LOGGED BY	E. L. Evans	LENGTH 107' SIZE HQ

FOOTAGE		DESCRIPTION	SAMPLE NO.	LENGTH	From	То	U ₃ 08	
		From To						
0-32	Casing							
32-54	Trachite:	weathered and badly broken	4454	4' 5	59 63	63 68)	much c	ore
54-79	Trachite:	dark grey, schistose 50% pyrite 62-65 rusted and badly broken 68-69 rusted and badly broken 63-78 much core lost	4456	יוו	68	79)	lost	
79-89	Trachite:	broken and altered and in part contains fault gouge. Represents a fault zone						
89-107	Trachite:	dark blue-grey, fine grained with 5% pyrite. Rock cut by numerous fine quartz-filled fractures.						
	END OF HOL	E						
		· · ·						
	*							
					2			
\sim								
						1		

KERR-DAWSON & ASSOCIATES LL. - DIAMOND DRILL RECORD

Suite 1 19 Victoria St. Kamloops, B.C.

							Phone 3	74-0544
		PROPERTY	REXSPAR , BIRCH ISLAND	ног	LE No. 76-7	BD-5		
	DAZIMUT	H TEST					1 0	
		Corrected	Core Size	Total Depth	203	Sheet No	of 3	
Footage	Angle	Azimuth	Angle of Hole60	% Recovery	83%	Logged by	W. GRUENWAL	4
			Claim	Elev. Collar	3370' -	Date Begun	NOS 15/76	•••••
			Section	Latitude 24	TOON	Date Finisher	1 Noc18/76	•••••
			Bearing	Departure .43	23) E	Core Stored	At	•••••
DEPTH	CORE LOST		DESCRIPTION	SAMPLE No	WIDTH of SAMPLE			·]
0-16'		OVERBURD	EN OF (LAN AND BOULD	ERS				
	·	CASINE TO	0 16'					
6 -24		GROUND (UP BOULDERS + METAVOLCA	NIC.				
		-last 1' in	o of a pale green chloritic	porphilitic m	toralcanic			
	-	-phenoriust	s loc triuments = 1/8"				-	÷
· · · · ·		-Darticlis	digned at 10° 10 C.A.					
1		<< 1% DV	inte : quartz ~5%					
ţ		- may be a	small motovolcanic avoing	our the ounds-	write se	hist		
		Radioactio	ritize: Background = 40 CP	S				
1								
14'-86'		PALE BROW	IN TO GRAY QUARTZ SER	ICITE SCHIST				
	161	-fine Grain	id and very hard in places	-almost cherty.				:
		- puit 51	1%					
		-in shices	find four amount of Pul	aren exicite mi	62			
	. <u></u>	Lotten quil	E proten up accounting to	H Loss of some con	4.			
	•	- filding st	Tammal und show of 8	2'-86'				
		- 74'-86' w	in massive reconned 10' A	ut of 12'				
		80'-82'	sing white mails with	nclusions of ore	4			1
		come to	sobiet (minor purite)					
		Suria	scanse frince pyrea je		1			
		1	· ·					

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	REX	SPAR BIRCH ISLAND HOLE NO. 76-B.	D.5		SHEET No	_ 2	of	3
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				T
24-86	cont'd.	Bre spelic:-						
		26'-30° . 30' .75-80° . 33'-65° - 40'-45° 4	2'-30°		-			
		451-75.531.650 58-700.641-600 70-55	-650.					
		74'-55° 78'-30° 1 (1)				:		
		' folding obsirved						
		/// ct 82'-86'						
		-bottom of section (36) is rusty and contact a	o st					
	-	50° to C.A.	1			:		
		Radicactivity:			:			
		241-86' 40-45 c.p.Ssome small areas	up					
		1060C.p.s. (u. 86').						
86-203		PALE CRAY TO GREEN FRAGMENTAL IRACHYT	£.					
		-fine grained pycite averages 1-3% (seldom > S	%)u. 195	· 199' p	rit 21	0%		
	6'	-nearly entire section shows some degree of be	icitation.	·			}	
		-slight color changes due to variations in smou	nts of ses	iciti and	fluoriti	(augu	<i>.</i>	
		- purple fluerite noted as fragments and band	5 (18"-1"					
· .		u 89' 113' -114'; 124' 125' 128' 134-137' 178	· 194 · 196 -	<i>199</i> .				
		-some lote stage feldspar-qtz. fluorile veinlets	(18"-12 th	rck] oburo	ed			
		at 95.98,99 121 131-137 191-196-198						
		-This are generally at 30°-45 to C.A.						
		-134-137 small section more preceized than usua	(20%)	byrite,				
		- The fragments due to later mitamorphism show gu	ite often a	rough		2		
		alignment; generally it is, 60-80° to the core	axls.	<i>U</i>	1			
		1836" - fault, slickensided surfaces; 40° to C, A	displace	ment is ve	rtical			
		184"6" - full, good example of pyrite slickingided	instain ~	35°-40° 1	o (.H.	<u> </u>		

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 - 219 Victoria St. Karnloops, B.C. Phone 374-0544

PROPERTY_	KEXS	PAR, BIRCH ISLAND HOLE NO. 76-7	3D-5	·	SHEET No	3	of	3
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
86-203	cont d	-203' fault clickensided pyrite surfaces 30°	to C.A		1C.A	3001	C.A.	
		marly vertical displacement			AD		ti ha sha	/
		-crampled sections of core at 174; 176-177; 180; 1	fs		//:///	الحريمة	Su Jacoo	
		may be small faill zones						
		Redesaubiel		/-				· · · · ·
		86'-203' Rickamund to 600.0.5.						
		average is 40-45 C.p.S. beally 600.05	(ic 102'-10:	(120)	1			
. 			· · ·					
					.0°			
	-	Photographs 1 Box 1(0-75); Box 2(75-10	SJ; Box Z j	55-130				
		ij Breecie We hacha h Close i	D, 50× 3/10	1301				
		(1L) Dox 4(130-134); 50×3(134-114)	· DUNG(114	-205].				
						•		
		Overall Kecovery is 82%						
		Recovery since 86 is 95%.						
		/						
		<u>`</u>	1					
					· · · · · ·			
· · · · · · · · · · · · · · · · · · ·								
		· ·						
]

KERR-DAWSON & Associates Ltd. - Diamond Drill Record

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

 t_{i}

		PROPERTY	REXSPAR BIRCH ISLAND	нс	DLE No. 76	-BD-6	-	
DIP AN		H TEST Corrected	Core Size BQ	Total Depth	1531	Sheet No		3
Footage	Angle	Azimuth	Angle of Hole -90°	% Recovery	75-80%	Logged b	W. GRUE	NWALD
•			Claim	Elev. Collar	3375'	Date Beg	un Nov 12/	76
			Section	Latitude	4650 N	Date Fin	ished Nov 14	176
			Bearing	Departure	3 <i>240 E</i>	Core Sto	red At	
DEPTH	CORE		DESCRIPTION	SAMPLE N	o. WIDTH of SAMPLE			1
0-16'		CASING 11	N OVERBURDEN.					
		-our churde	10.73 ?					1
								1
23-631	30'	PULTI BOD	WAN -> EPEENI QUARTZ SEPICI	TE Schiet (A VICES	POKEN GRO		1
		-has a las	inter a source with own	attly la minus	they ard			1
		hal liman	Fi anti in 2000 1%	of the partition	Janua			
•		by Umbrec	22/ 220 27' ADO AI' 2	101.800 L. 0				+
		-core arights	Ided and know the Incom	1 1 1 1 1 2 1 C	pre axis.			+
	<u>,</u>	-27-62 7	once and precision (pspicion	Val Brast				
		-Tower Cont	act is nulle and crampy as	no at 45-60-	Цас.п.			+
		Radioactiv	<u>un: BACKEROUND = 43 C.p</u>	<u></u>				+
		23'-63	<u>45-30 C.p.S.</u>	·····				
			Â	·		ļ		
63-81		PALE GRAN	1. MASSINE, BRECCIATED TRACHYT	E				
		- purite 3-	5% generally surrounds fragm	unts of trachy	til			•:
		-surplish	color is due to the presence of	fine printed	Surple 1	corite		
		- Fractionia	variable however most are al	30°-45° loc	.A. ,			
	<u></u>	-minor la	le stone thin white feldebar w	einlets noted	orrasismul			
	·	Radisactivi	In:					
		63'-81	45-55 c. p.s					1
		The comment	/			1		1
					· ·	t		
				· · · · · · · · · · · · · · · · · · ·	-	<u> </u>		1
	L.,	- J					L	

herr-Dawson & Associates LTD. - Diamond Drill Record

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	R	EXSPAR BIRCH ISLAND HOLE NG-BD-B SHEET NO. 2 of 3	
DEPTH	CORE LOST	DESCRIPTION SAMPLE No. WIDTH of SAMPLE	7
81'-98'	U	PALE GRAN-GREEN, MASSINE, MOTTLED BRECCIATED TRACHNIE.	
		-fine grained pyrite = 5%, locally 10-15% in small bands	
		-spotted appravance due to white -same fragments of trachity.	_
		-fragments obvious at 83'-86'; 93'-98'6"	
		85"6" small fault showing well developed slickensided surfaces	
		fault is at 30° to C.A. and movement was por zontal.	
		large blebs of dark purple flyssile (often with puile) at \$3',856	
		· purple fluorite is also found well disseminated of provine and fragments.	
		-93-98'6" lighter colored quite frigmented trackete showing	
		numerous thin white feldspar & fluorite pyrite pernets (average 60° 70° to CA).	_
	-	-stresky appedrance is approximately 60-70° fr C.A.	
		Kodiodetivity:	
		81'-98'6" '45-100 c.p.s. (91'-92' 90-100 c.p.s.)	_
981/11-15	9 (5	PALE GRAN- GREEN MASSINE SECTION OF VARIABLY BRECCIATED TRACHYTE.	
	2'	-siction is quite uniform	
Endot		- syrite suerages 5% locally up to 7% (last 5' of hole = 2-3% pyrite)	
Hole.		-section is variably precised accounting for deferences in mattled asperiance	
		-some parts of precisted zone shows alignment of fragments	':
		most common angles of alignment are 60-80° to C.A. (su 1016:110'.115'	
		123' · 130' · 144')	
		- small bands of massive fluorite (= pyrite) generally 1"-2" thick are	
	· · ·	found throughout the section.	
		-buccio fragmente essile observed at 107'-110': 127: 33'-134'; 136'-138'	
		149'. 151-153!	
		-late stage white feld our minutes (5/3") are quite numerous and generally	
		found at 30°-45° to'c.A.	

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 .9 Victoria St. Kamioops, 8.C. Phone 374-0544

050711	CORE		0.000 5 00	WIDTH	I	·	<u> </u>	
DEPTH	LOST	DESCRIPTION	SAMPLE NO.	of SAMPLE				
78'6"-15	3' conte	l						·
		Kadioactivity:	`					
	• •	98161-153' 45'-75 C.P.I.						
		75 e.p.s. at 102' . 80 e.p.) At 103' :750.D.1	st 148'					
		Photoamohi			1			
		Phito 1 Box 1 (0-77'): Box 2/	71-101	Rox 3	01-175	/)		
		" 2 Box 3(101/125): Box 4	125'-150	· Rox (1	50-153	1:		
			100 130	1 00000		<i>.</i>		
	· · ·					·		
	· · · · · · · · · · · · · · · · · · ·		·····					
			•		<u>}</u>			
	· · · · · · · · · · · · · · · · · · ·							
					 	· · · · · ·	<u> </u>	
					<u> </u>			
		·····	·					•:
			ļ		<u> </u>			
			· .	· ·	<u> </u>			
	· · · · ·	· · ·	• .		ļ	ļ		
			· · · · ·					
		· · · · · · · · · · · · · · · · · · ·		н. 1. 1.				
	· · · · · · · · · · · · · · · · · · ·							

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

BQ

Suite 1 -219 Victoria St. Kamloops, B.C. Phone 374-0544

1

: _

Sheet No of 3 Logged by W. GRUENWAD

Date Begun Nov 8/75 Date Finished Nov 0/76

PROPERTY	REXSPA	R, B,RCH	ISLAND
		······	

Section

Core Size

Angle of Hole -66°

Claim.....

HOLE No. 76-80-7

150'

50%

Total Depth

% Recovery

Elev. Collar 34201 Latitude 24550

DIP AND			
	Corr	ected] · .
Footage	Angle	Azimuth]
			1
	· ·	+	-
	· ·		T
	1	1	1

		·	Bearing	Departure 23	325	Core	Stored A	t	
DEPTH	CORE LOST		DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
0-20'		CASING IN	OVERBURDEN OF CLAY AND TO	DUDERS.					
20132	11	VADIALS &	ACK THACK (AUCREUPACIT						
20-23	Ø	-may be su	boundlying bidrock.						
		-some of no	uk types present are:			•	•		
		i) pale	brown at 2-senal schist				•		
		ii) green	mile volcanic (andisiuc).						
		iv) fragm	ental trochyte						
		-some of	these fragments are waterworn	pebblis t	upr			· .	
		bedroek 1	has not been penilialid.		0	<u>,</u>	<u></u>		
		- WOTE: K	obs becoming quill light due t	to squeezin	t groun	Q			
		banding 30	o to con axis, '						
		This is p	robubly start of bedrock. (or large	boulder !)					•
72/11-0	;/	Dois Bon	WAL FINE CRAWED CULTADIED ROCCO	INTEN DEZ-	(EDICITI	- Selle		+	
56 1	13'	-purite SI	%, rusty fractures due to subsur	Tace water	riculation		•		
		-bands of	massive chesty material interbedd" we	th the sch	st				
	ļ	- core angles	variable; many are at 45° to C.A	•					
		- Kadinactu 72/11 -01	The BACKEROUND = 50 C. p.S.		· · ·			+	
L	L	12 2 71		A	L		l	- A	

LERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 - 2.5 Victoria St. Kamloops, B.C. Phone 374-0544

•:

11

PROPERTY_	R	EXSPAR, BIRCH ISLAND HOLE NO. 76-	BD-7		SHEET N		of	3
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
91'-95'6"	1.5'	PALE BROWN - GRAY FRACTURED, CONTORTED	QUARTZ-				-	
	· .	SERICITE SCHIST GRADING DOWN TO T	RACHYTE.					
		-pyrite 510%						
		-appears well precipted at 93'-94					ļ	
		-angles of rusty coated fractures = 30 ->45°	to C.H.				<u> </u>	
		- purple fluorite grains and staining.						
		Kadisacturly					<u> </u>	
		91'-95'6" 60-120 C.p.S.						
01/111 0	let,	Real Court Court Para and France	40-0		IM		1.2.	
436 -4	<u>4</u> "	PALE GREEN TO GRAY DRECCIATED IRACHYT	E(L)EKI(IF SCUIS	1/10	DERATE	LY KAD	OACTIVA
//6	[]	-pyreu =5 to ; locally ip to 50 to.						
		- Chi	t sta	not mill	ination	1	<u> </u>	
		- sincite when a fragments and an tracture		This I	m.	/		· · · · · · · · · · · · · · · · · · ·
Õ		- hecomica more of a tack to at 100 anward =	S S S S S S S S S S S S S S S S S S S	<u>, 1947 je</u>			1	
		-fragments of pierale fluggite noted propunast	Thus frage	nonte				
ス		- Dale green Torbunite noted on tractures at	04'-106					
Y		forcesional feldspar -ote - fluorite veintits no	ted					
-11		Radisactivity:						: :
		95'6"-99' -120 -400 C.p.s. (massive pyri	th section)				
		99'-116' 50-15 c.p.s. (114'6" 110 c.p.s.)	•				<u> </u>	
				_ <u></u>	ļ.		ļ	
116-142'	3'	PARK GRAY PYRITE - (IRANINITE REPLACEN	ENT (BR	ECCIATE	Þ		ļ	ļ
		-purite in fine growing and clots, 15-20% /uc	ly 50%				<u> </u>	
		Fremainder of zone is f.g. black material fusing	it, tracky	ti etc).				
		zone shows bricciation will durlosed in pos	an	•	L	ļ	 	
		+ seriet schiel (green) fragments towned bedly	in The m	sciel pun	IL ZOW	<u> </u>	L	l

herr-dawson & associates LTD. - Diamond Drill Record

Suite 1 - 219 Victoria St. Kamioops, B.C. Phone 374-0544

PROPERTY_	REX	SPAR, BIRCH ISLAND HOLE NO.	76-BD-7		SHEET No	3	of	3
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
16-142	contid.	- dus surple flugite found as fragments a	and small orains					
		-factures are well oxidized to brown an	d vellow some	marshe	Iraniur	attisa	tion mi	terak
	- -	· put avins have a streaked appearance,	the griestation	of				
		which varies from 0°-30° to C.A. (20	·-30° at 130'	1331)	• •			
		-upper contact at approximately 60° to	C.A.					
		-lower contract at approximately 55° to	C.A.				ļ	ļ
		Radioactivity:					ļ	
		116-120' 60 c.p.s - 150 c.p.s.		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
	······	120-128 200-400 0.9.5.		<u></u>				
		128-142 200-450 c.p.s.				·	ļ	
	-	· · · · · · · · · · · · · · · · · · ·					ļ	<u></u>
			6 0 0				_	
142-143		PALE GREEN-BROWN, KUSTY BRECCIATED	OTE-SERICIT	E XHU	T+TR	ACHYTE]	
		- py-iti 5-7%					<u></u>	_
		-143 froctures at are slup (20°-30°7	TO PH. J.				<u> </u>	
		- Indures are rest, coalid.						_
		Kadisactivity:					<u> </u>	
		14-2'-143 1 100-175 c.f.1					<u> </u>	
10/ 00	/	Beneficial Description	n = m	0.00				
<i>143°7</i> 50		BROKEN SECTION - DRILLING PROBLEMS	-LOST /105T	CORE.	<i>i</i>		<u> </u>	
	-6'	- some of fragments consist of pyrile-ciran	unity restaces	unt in t	hach de			
/		indicating the ope zone was not comp	lift intersecto	d	0		<u> </u>	
End of A	ole	Frisk of Obsing how stopped any further di	Ming.					
			112		201			
		Ar Photographi. 1 of Box 1 (0-101) Box 2(10)	-128),	\$0x3(1	28-15	<u>Ψ.</u>	
				·	ļ		_	
					<u> </u>			

KERR-DAWSON & ASSOCIATES LID. - DIAMOND DRILL RECORD

Suite 1 -- 219 Victoria St. Kamloops, B.C. Phone 374-0544

1

DIP AND AZIMUTH TEST Corrected Footage Angle Azimuth

Core Size	BQ -90°
Claim	
Section	
Bearing	

PROPERTY REXSPICE, BIRCH ISIAND

Total Depth	126'	
% Recovery	32%	
Elev. Collar	3440 24250N	•••••
Latitude Departure	23315E	••••••

HOLE No. 76-BD-3

Sheet No of . Logged by VI CR Date Begun No:15/1 Date Finished May 2/16 Core Stored At

DEPTH	CORE	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				÷.,
0-15'		CASING IN OWERBURDEN (BOULDERS -> CLAN).					•	
16-23'	5'	SUBSURFACE BROKEN MICH. PYRITE REPLACENCE	NT (+Ile	ANINITE)			
		-conversioned any mice + pyrite replacing a						
		serieiti schist -tracheste rock.	· .					
		-banding of pyrite in last 1 is at 60-10° to c	or axis					
		- Dyrifi averages = 10% ; locally 15%						
		Redisactivity 40-50 C.p.S = Background						
		16'-23' 100-150 1.05.						
23.36	6'	VARIABLY REPLACED TRACHYTE					· · ·	
		-invalor represent by prate and miner	nice					
		-some pyrite bonding poted @ 60° to C.A.						
		prite avernes 15% locathy 50%		· · · · · · · · · · · · · · · · · · ·				
		- some sections of pyrite show exidetion to li	onite					
		- oursle flushite stained at 25'						
		Ridiscrivity						
	•• ••	231-36' 50 -100 C.D.S. (average = 50.40)	.ps.)					
			· /					
		•						

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

• (

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	REXS	PAR, BIRCH TSLAND HOLE NO. 76-B	D·S	. .	SHEET	No2	of	4
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Γ			
36'-43'		MASSICE PURITE - MASNETITE REPLACEMENT.						
		f. a to and paired putite averages 30-40% la	ally 60%					
	•	contains numerous limonite filled covities.	1					
		- swite is will banded with diss @ 60-70° to	A.	•				
		- pile organ f. c. sericite schist found comillel	to the pay	ite band	ma			
		manufile is found throughout the section up t	2%.		1			
		-This section averages weak to mederate in mean	iticin, whi	reas				
		massive purite - mica uraninite replacements gen	ally lack	machtu	17			
		Redirection ty:	· . /	/	ļ			
		361-431 50-60 1. p.s.						
	-							
13'-53'	31	VARIABLY RADOACTIVE SECTION OF TRACHNTE.			ļ			
		43'-16" siricite schipt -pyrite -amininite zone.						
		some trachytic fromments						
		banding of schiet aprili is indistinct @ 60.80° 1	»C.A.			<u> </u>		
	·····	· pipite everage 5-10%.					· · ·	
		16the rusty factured section (6").						
		sock below to a weathered breceinted trachester-	may be					
		emall fault & 70° to C.A.	/				<u>.</u>	
		punple flusrite claiming is present,						
		-last 3-4 is bicken maty weathing white	to gring t	achute				
		Radioactivity ?.		0				
		43'-53' 50-100 e.p.s. (1000.p.s. at 50	<u>ti').</u>					
					ļ	·		
		•						
					<u> </u>			

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	REAS	CPAR, BIRCH ISLAND HOLE NO. 76-1	3D.8		SHEET No		of	4
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		•		
53-71	1"	MASSIUE PALE GRAY TRACHATE						
		- succhish tint is due to presence of fluerite de	pined					
		through the trackyte.						
		pyrite content abuages <5%, most pyrite to	und op					
		grins or leace around fragments of tracheste and	d serie te	stint.				
		-transmits may protectly price buccultion which	han hun;	-+ 11				
		repeated so tragmentation ign't defended object	ha Thaongh	the ju	ilian -			
		Fragmentillion is best observed at BY -66" from	vals cont	07 1300	hijk,			
		pall oren seriell school and some felaspit po	vr. 6	1001.0	0			
		and the construction of the first and the const of a	pill'in []		1			
	ī,	Some This Fishts in Law section and 02.35 1000	T.	+ 1175 1040	Section			
		Rolling time	<u>o nanna c</u>	<u>I VIZI PRIZ</u>	1			
		53-71' 40-50 C.P.S. = Backermand						-
71-75%	iy .	Similar to above except much richer in f.g. p	ale arcen					
		which schiet						
		-pinite is sills						
		-aspears frogmented and unaled.						
		- Anoty fractures noted at 10-35° to C.A.						
		Retartivity						
		71-7516" 50 C.P.S.						- <u> </u>
			· · · · · · · · · · · · · · · · · · ·		· .			
		· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · · · · · · · · ·	
			J	J	I		l	J

• .
KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

.

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	Rexs	PAR, BIRCH ISLAND HOLE NO. 76-1	BD-B		SHEET No	. if	of	(
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
75%.	1'	MASSIVE PALE GRAY - GREEN TRACHITE.						:
951		· pyrite aurages 1-3% (87'-103' 21 10 23%).						
	· .	- susplich stain due to scattered fluorite	-					
		-fragmental in places though act obvious		••• [•]				
		- core angles notice are 63° to 90° to core uxis.						
		Rodinactivity:						
		75'6"-95' 50-60 C.p.s. (1500.p.s et 40	<u>b').</u>					
95-103	/	MASSIDE PALE GRAY MOTTLED (FRAGMENTAL) TH	CACHATE.					
		Duril 1-30% found cround fragments.						
	•	suicité partinos potéd		-				
		- pape -> prin flucrite still noted as specks	endin					
		late veiclets and fractures.	·····					
		Radioactivity: 40. De.p.s. = Background.						•
		95'-103' 50-60 c.p.s.				•.		
							•	
103-126		MASSINE PALE GRAY (PURPLISH) TRACHITE						
End:		1-20% pyrile						
		freemental in pluces as above sections	11.17					
		-while feld for - I uprile pyrile out ours al	15 -11	•				
		Dist I facks of galice at 115						
		ranoraciona:	hoto # 2	Rar	12.57	1.200	2/52	871)
		103-111 - 30 60 c f 3.	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Part	1871.1	N.P.	2/11/-	1261)
		<u> </u>	1010 9		-10/ //	, w.		~~/
			· · · · · · · · · · · · · · · · · · ·					
1			La		ليصدد مد مدينة من من المد. ا			

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 – 219 Victoria St. Kamlooos B.C.

Kamloops, B.C. Phone 374-0544

		PROPERTY	REXSPAR, BIRCH ISLAND	HOL	E No. 76	-8D-9			
DIP AND AZIMUTH TEST Corrected		TEST Corrected	Core Size BQ	Total Depth	otal Depth			of	4
Footage	Angle	Azimuth	Angle of Hole	% Recovery	15 13	Log	ged by 🥼	Graines	âld
			Claim	Elev. Collar	520	Date	e Begun	1012110	• ;
•			Section	Latitude	250 N	Date	e Finished	No15 16	f #.
			Bearing	Departure 23	AK)E	Core	e Stored A	t	******
DEPTH	CORE LOST		DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
-81		CASINE . O	JEPBURDEN 4-5' Casing in subsu	ha					
		minselizer	(zore (4'-8')	0			<u> </u>	ļ	ļ
1.000		<i>l</i> :	M D D						_
-25%		<u>URANIFERRO</u>	25 MICA-PYRITE KEPLACEMENT.						<u> </u>
		-Cripise Cost	a books of silvery mica	Ten d		<u>.</u> .			
		-JIN CAJIN	a poul OAN ALMANAS OF UMP		· ·				
		- Ocality in	lun There in the local weather	10%					
		- Divit of	the in cancelor hands		f			1	1
		21-25'6"	ook one producitic "Fracturte	" it					
		white lot	s of feldstar 14-5 mm across).					· ·	<u> </u>
		contact w	ill about minimized some is is	sigular at	15º 10 C.	A	<u> </u>		_
		MINER DUI	gle fluorite noted.					_	
		Kadinaction	Tip: 40-50 is Background.						
		8-20	90-100 C.p.s.				<u> </u>		
		20.23	<u>30-60 n.p.s.</u>					+	+
		1.5.15	<u>40-110 C.p.s.</u>						+
51611.5	31.11	Mich . P	TE - URANTE PEPLACEMENT ZO	V			-		
	<u> </u>	-Course CK	and mice (2.8 mm ocross) form	1 260% of	riek				
		midium	rained parite 7-15%		·	ļ			<u></u>
	•	- orcerials	-any fig. surjects school books	13:15%	<u> </u>	I			

• • • • • •	KERI	R-DAWSON & ASSOCIATES LTD DIAM	ond Dri	ILL REC	O'BD	• •••• •	Suite 1 - 2	19 Victori Kamloops, Phone 374-
PROPERTY	RE	XSPAR, BRIG TSEAND HOLE NO. 76-7	BD.9		SHEET No.	2	of	<i>i</i> 4
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			1	1
25/64-	cont'a							-
4316		Placks of due small fluorite noted in small amo	unts.					
		416 - 6 of cale one sorphysitic trackente.						
		- this shown has linned of ninite quincite schio	ť	• -				
		are ornelly 70-90° to the cose axis (C.A).						
		42'6-43'6" - small zone of mich-pusite richer	ement.					
		Kedisoctivit: 40-50 c.ps. = Background.						
		25'-35' NO-340C.D.S. (22000, p.S at 27'29	31					
		351-4364 60-90 6.0.5.			:			
13%.		PURITIC BRECCLATED TRACHYTE						
6316	V	· forcoments of perphysitic trackets up from to	Vin-4cm	PCross				
		- pale orea fie single schipt also stud how	ver these					
		an not as common as the above fragment				:		
		- fragments and only chighthe mineralized by the.	Disite				•	
		mest of aniti-mica manium minimilization	0					
		concentrated in the spaces between troomento	and					
		in small massing representationals						
		Such well minimized prior one found at 47'-4	\$160.					
		50' 51' . (3'-54', 54'6"	, , , , , , , , , , , , , , , , , , ,					
		-an pinite center to \$15% : locally higher a	sabout					
		- bandlog is 70°-25° tothe Con avis						
		-osconieral atz-feldscar flussite blubs at a	01.9636	11				
		Bodipactivila		· · · · · · · · · · · · · · · · · · ·				
	······································	43114-521 62-110 CB1 (2100 of 441-4	1)				-	1
	· · · · · · · · · · · · · · · · · · ·	5%- 6311 50-201 65	/					1

6 KERR-DAWSON & ASSOCIATES LYD. - DIAMOND DRILL RECORD

: ::

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_	R	EXSPAR, BIRCH ISLAND HOLE NO. 76-7	3D-9	[`]	SHEET No	3	of	4
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		1		1
1.2. 4.11 -1	11'	PALE CREEN CRAV TRACHITE ZONE						
		-still bricciated trachite with pinite -mic	r.					
		replacement fillings						
		famile is firequired and areally 5%						1
		Frequents of pale green seize to schot still not	1					
		and selder on ministered by pupite.			ļ			
		-coarse quined mice and piget Replacements are	scattend					
		in band, concielly O.S. to Zem Thick.	· · · · · · · · · ·					
		-white feldipar - flyoude-pyrite pays of 64	6-65-6		· ·			+
		73': 90' (alco noted galina grains); 98.		;	:			
		105'-107' molted while and give feld por-since	In Flicke	lh				
		1 20m2 having a shiped appending.						
		-scholoning is 75 -10° fo C.A.			· ·			
		provide 1-2 to in this small hellon with mike	or poura					+
		Gains also pland.	· ····································					
		POCEDOCIADUM - 40-30 C.P.S = DECROPERIO			+			
		11 - 01 coducas (zel-z/11 - 75-20)	25)					
		(90) $72-50$	1				<u>.</u>	+
		Pl'opi' min and al	·/					
		Gil-111' HO-SOP O'S = Portamind						
		1. III 19 So Cip 2. Concernant.						
1131-111		GRAN BRECCHATED TONE.						
		consistent block f. g. froominte Concillite 12m	als.					
		2 cm across.	····					
		- pusite is found on filling in screw between	(m				•	
		Programts - Breanan 52 5 (1000 indice tolder	arsto.m	ing 1.				

,

. .

KERR-DAWSON & ASSOCIATES LTD. - DIAMOND DRILL RECORD

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY.	REY	XSPAR.		D-9		SHEET No	. 4	of	
DEPTH	CORE LOST	j DESCRIPTIO	N	SAMPLE No.	WIDTH of SAMPLE				
113-116	coalld.	Radinacticula							
		113'-1141 70-80c.p.S.	/						
		114-116 40-500. p.s.	(Beckground).						
	<u>.</u>								
115-126		CREEN GRAY WEARLY MIN	<u>VERMILED TRACHVILE</u>	(DE Fike	y RAD	SACTIV:	<u>;/</u>		,
	ļ	- bucciation is will during	1 chin places		, 				
	<u></u>	-some of fragments are prete	ally or wholly compose	d of fluo	ite				·
		-sericité schist fragments à	cands also hoted.	- <i>i</i>				· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	-pipite is generally J. G. F.	ad found in space l	eleviter					· · · · · · · · · · · · · · · · · · ·
	·	frequents -av. conting	$b \leq 5 lo$						
	-	- hurrelyn je generally C	ourse (u lange frage	nenly.					
		Kanspectively:	In Full in					· · · ·	
		110-126 50-140C.p.1. [Highial 116 1000.	·.).					
· ·			1251 142 0 0						
			121 1708.4	D./				· · ·	
		Photo #1 Porland	21). Par 2 (117'-66')					
	1	Photo # 2 Rox3 (66'-91	1. Rox 4/01-116' 1.1	2x5/111-	261)				
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·				: ·
		· · · · · · · · · · · · · · · · · · ·							
			:		•				
	••		ł						
				· · ·				· .	
		•							



