003813

$82 \mathrm{~K} / \mathrm{NW}$-2 24

PROPERTY FILE

PROPERTY FILE

NOTAEIAL CERTIFICATE

```
OF TFUE COPY
```

Province of British Columbia :
To Wit: :

I, William Harold Patterson, a Notary Public in and for the Province of British Columbia, by royal authority duly appointed, residing at 942 West Ponder Street, in the City of Vancouver, in the said Province, do certify that the paper writing hereto annexed is a true copy of a document produced end shown to me end purporting to be a report on the Winslow Group and Associated Mining Properties by Mr. B. W. W. McDougell, B.A., B.Sc., dated 12th day of November, 1946, the said copy having been compered by ne with the said original document, an act whereof being requested, I have granted this certifcate under my notarial form and seal of office to serve and avail as occasion shall or may require.

Dated this 25th dey of February, 1950.

A. Notary Public in and for the Province of British Columbia

B. W. W. MoDOUGALL, B.A., B.Sc.,
 Consulting Mining Ingineer. ------------
 Registered professionel Engineer Province of British Columbia

Exeminetions Feports Appreisels Consultations Mensgement

416 Benk of Nova Sootia Building,

Telephones:

Office: PAcific 1631
Residence: North 1616

VANCOUVER, B. C.

November 12 th, 1946

Messrs. W. J. Scorgle \& F. H. Patterson, 942 West Pender Street,

Vencouver, B. C.:

Dear Sirs:
In eccordence with your instructions I heve mede an exsmination of the Winslow and Associsted Mining Properties situeted in the Lardeeu region of British Columbia. Attached hereto please find ry report. I trust that this will provide you with the information you require.

> Yours very truly,
B.W.W.MoDougall (Sgd) Consulting Mining Engineer.

THE WINSLOW GROUP
 end
 ASSOCIATED MINING PROPERTIES
 Silver Cup Mounteins
 Frout Lake Mining Division
 British Columbia

416 Bank of Nove Scotia Buileing, Vencouver, B.C., November 12, 1946
B. W. W. McDougell, Consulting Mining Engineex.

INTRODUCTION

The purpose of the exemination on which this report on the Vinsiow and associeted mineral clair groups is based was to detemine the general mining merit of these properties and the possibilities of their being developed to the stege of profitably producing mines - elso to obtain such infometion ts vould perinit of submitting recomendations and suggestiona with reference to their more complete exploretion and development.

The ares in which these properties are situated, es were other minerelized districts in the extsnsive West Kooteney region, wes first discovered, explored and somewhat extensively prospected in the ${ }^{\prime} 90^{\prime}$ s. There wes, however, a considerable exodus of miners from the aree around the beginning of the century first to the Klondike and leter to the Cobalt silver cemp. Duing the pest 45 years a number of properties - notably the Sllver Cup, Nettie L, Meridien end True Fisaue mines - heve had production activities over longer or ehorter poriods and, as a result of these operations, some considerable informetion hss becone available concerning the more intimate deteils of ore-body geology.

The Winslow Minerel Claim, the principel end centrel one to be dealt with in this report, was steked prior to 1904 end most of the developaient work on it was done prior to world wer one. It wes not, however, until 1939 that a trector road was constructed through to the property. From 1939 to 1941 a production operation, conducted on a leabing besis, resulted in rehsbilitating some of the older workings. As a result of this work some information is available concerning ore velues ond one of the principel development edite is now open for exeminstion. Certain of the olaer workings are ceved and ineccesaible while others are acceasible with some difficulty. The property records include e very considereble number of sample asseys. The ssmples are reported to have beon takon consecutively as underground work wes advenced. The precise points or places sempled ere, however, not indiceted. In the course of my exemination I took numbers of cheok semples for comperison with those conteined in the older records.

In presenting the deteils deecriptive of these properties the Kinslow and Oladhend clains ere proporly to be considered as the key or centrel holdings. Not only are they centrally loceted with respect to the consolidated groups but the Winslow-Gladhand vein, froin present indicntions and appearences, is the most important ore structure now known on these properties. Furthernore, the operations sites are the most accessible and in auch locations that year-round operetions are reedily feasible. Operations on certain of the other claims, because of their topographic settings, cen probably be conducted auring the winter months only at heavy or extraordinary expenss.

My exmination wes made from September 29th to Ootober Srd, inclusive, 1946. I was accompanied on the property by Measrs. W. J. Scorgie, Albert Lord and George Lindsay. Some 43 semples vere teken by zyself or under ry direct supervision. These were assayed for gold and silver by Messrs. J.R.Williams and Son, Provincisl Asseyers, of Vencouver, B.C.

PROPERTY.

The properties under considerstion in this report, es at present constituted, are in two seperate groups. The individual olaims are es follows:

There are 23 mineral cleins and fractions in all. Five are Grovn Grented end the others ere locetione on which the offecting end recording of esseasaent mork is recuired smubliy in oraex that titlo may be continuing. The agcregete eree is roughly estimated at a little less then 1,000 seres.

MEIGHBOEING RROPESTIES:

Mineral claims of the Silver Gup group lie a short distance to the north esst and probebly location cleims of this group actuelly edjoin the vinslow group. The upper teminel of the old Silver Cup tromwey is probably about one-helf mile distent from the Le Roi No, 4 elaim. Cleime of the Triune group are leas then one-cuarter of e mile distent easterly from the Okenegan clein. The U and I olaim practioally adjoins Winslow claime on the enst.

The Cromwell sroup eajoins the Alice oleim - Pomerly a pert of the Group known as tine Fogey Day - on the eeat and the I X L claias adjoin this south eanterly group of Vinslow Properties on the eest. Other ainersl cleim groups, some of which are st prosent attracting intereat, 31 e on the south weateriy slopes of the ridge between the Vinslow Propertios and Trout Leke.

SITVATION:

No. 1 group of the Binslov Properties streddies the sumalt of the Silver Cup mounteins extending down over the heedwiters of Burg (7 ille) ereek on the south weat sind over the heedwaters of Cup oreek on the north east.
 from near the sumit of the renge donnwerds to the south nest.

The looktion of the kinelow headguartera crap io generally deacribed us being some ? niles eouth esst from Trout Leke City and ebout 3 milee north eest from Trout leke at the mouth of Burg (7 Mile) ereek.
B.W.W.MoD. (Init.)

The individuel ciaims of the properties are shown in their spproximete geographic relationship with oech other end with the physical feetures of the district in a Mineral Reference Map sccomparying this report. Deteils in respect to the approximete positions of locations or un-surveyed minerel cleime are ee given me by Mx. W. J. Scorgie.

TOPOGWRPIY:

The Silver Cup mountains occupy an area corresponding, roughly, to es segnent of a circle, - the chord some 18 miles in length being represented by Prout leke end the upper 1 㒵miles of the hardeau river of the south west and the arc beling fomed by Lerdeau creek on the north, north euat ond east and by Healy creck on the south east. The hoight of the exc is represented, also roughly, by the distence from the mouth of Laugiton creek on the SE to the confluence of Brown and Lerdeau creeks on the NE - a alstence of ebout 6 miles.

The terrain, broken by deeply-cut creek courses, fises from the boundaries of this "circle-segment" to culminate in pidges, high plateaux and peaks from 7,000 to 9,000 feet in eltitude. These are the Silver Cup mountains. They are, of course, an integral pert of the Lardeau distriot and of the Selkirk range and mey be generally described as a region of high relief characterized by. a great velley trending NW - SE with high flanking renges broken by numerous creek velleys draining to the central velley.

The eltitude of Prout lake is $\Sigma, 400$ feet - that of the sumit portion of the Winslow group probably reaches to nearly 8,000 feet and thet of the Alice-Sunshine group to slightly higher sltitudes.

The Winslow claim is st the heed of Burg creek which flows throughout its short course from the ridge sumait to Lrout lake through a deep V-shaped velley with regular side slopes. There is no glacial oirque at its head. The Ailce-Sunshine group is at the head of Leughton creek. This oreek flows to Trout lake through a deep V-shaped valley with regular side slopes but there are two broad gleoial cirques end hanging valleys at its head. The topogrephy is typioslly elpine in character.

The slopea NE Irom Trout lake are much more regular than are those on the opposite side of the sumit and prectically all of the mineral cladra are or cen be mede acoessible for exploration work. In respect to a mining operation centered on the Winslow claim the topogrephy is favourable. Many mining operetions in the Province heve successfully carried forward year-round work under much less favorable topographie surroundings.

ECONOMCICS.

CLIMAES:

The annusl precipitation at Ferguson is about 49 inches which figure includes the water from an averege of about 22 feet of snowfell. Ferguson, which is situsted at the confluence or the North end South Porke of Lerdeau oreck, is at en altitude of 3,000 feet. Precipitation varies more or less directiy with the eltitude and both totel precipitation and snowfall are considerably greater at end sbove the aile-high contour than in the valleys. At Glecier on the Canedion Pacific Railway the annuel precipitation is given at 58 inches end the aggregate snowfall tit 34 feet. The eltitude at this point is 4,072 feet. At the Vinslow cemp which is between 6,000 and 7,000 feet above sea level precipitetion and anowfell is probably somewhet similar to thet of Clecier.

Temperstures and snowfell in the Lardeau area, generelly, are aimiler to those prevsiling throughout the Vest Kooteney region and, in respect to olimete, operating conditions are very similax to those prevelling throughout the slocen, Ymir, Sheep Oreek, Rosslend, Felson and other districts. Provided adequate errengements are made and suiteble facilities end equipment installed mining operations cen be carried forward continuously throughout the year.

TMUBER:

The mountain slopes on the NB aide of Trout Laike are heavily timbered. Timberline is ebout at the 7,000 foot contour. Jrom the lake inargin, (Elevation 2,400 feet), to sbout the 5,000 foot contour there is excellent comerciel timber. Verieties include cedar, fir, spruce, pine and hemlock. Above the 5,000 foot line hemlock and belsem precominete end still highor few trees other than belsam occur.

In the event thet a serious effort be made to esteblieh an importent development and production operstion on Winslow a smell sawmill, erected on the midslopes of the mountain along the tractor roed, vould eeem on economic necessity.

WATER:

Weter from the upper course of Burg (7 Mile) creek is available et the Winslow camp and plant aite. There is an adequate supply for domestic, mining, plant and metallurgical requirements. This weter supply, moreover, is aveilable without ghy considereble expense for aiversion.

POWER:

No weter power of recognized importsnce is aveilable in the ressonably close proximity to the Winslow site. Burg and Laughton creeks, in their upper courses, heve flows of possible 2 OFS in the dry ressons. Thile their flows et lower eltitudes are doubtless greeter - particularly during run-off seasons - the cost of developing low-volume, high-head power and of tranmitting this to a plent at Vinslow vould probably prove quite unecononicel. The creek volumes very through lerge 11 mita and the sutumn and wizter flows are low.

From such information as I could obtain during my exenination, I am of the opinion that power requirements can best end most economically be provided by the installation of diesel engines near the operations sites.

TRANSPORTATION AND ACCESS:
Revelstoke, a divisionel centre on the Canedien Peoific Reilwey some 330 rail miles easterly from Vancouver, is the ususl place of entry to the Lerdeau area. There are, however, two other access routes; one from Castlegar end Weat Robson northerly up the Arrow lekes and the other northerly up the Kooteney lake from Nelson.

From Revelstoke a branch reilway extende SK down the Columbia river valley to Arrowhead near the north end of the Upper Arrow lake - a diatance of 27 miles. A steam tug and berge service plys between Arrovhead and Beston - Beaton being aituated et the north end of the NE axil of the lake some 9 miles distant from Arrowheed. A road extends from Beaton south easterly following the course of Selmon oreek thence over a low divide and down to Trout Ieke City at the NW end of Trout Iake. The rood distance is 12 miles and Trout lake is 1,000 feot bigher than the Upper Axrow lake. The roed, at its highest point, is severel hundred feet hicher than Trout lake. This roed is in felr condition - there ere some gradee b t minor repairs and servicing are all that is required to make it a ressonably good motor trensport route.

Trout Lake City, aituated et the head, or NW end of Trout Lake, once a thriving mining community, is now but a hemlet. Besidee a post office it has a store and a hotel. The present access route from the village to Winslow is via gasoline launch a distance of 5 miles down the lake to Winslow landing a short distance SE of the mouth of Le Beau creek - thence sone 6 miles up the SW slopes of the Silver Cup mountains vig narrow tractor road to the Winslow camp and mine workings.

A road, traversing the NE shore of the lake, at one time connected Trout Leke City with the vicinity of Ninslow lending. This, however, is now overgrown and in poor repelx. The trector roed, constructed by lif. li.J. Scorgit, rises about 4,100 feet in the 6 mile distence - the average gradient being ebout 13\%. The grede is uniform; it cen be widened by bulldozer, with comparetively little expense for rock work, and made sultable for truck heulege in summers and tractor haulage in winters. The cost of construcing the roed through from Frout Lake City to the mine is estimeted at about $\$ 15,000$. If this were cone it woul be possible for trucks to meke two round-trip fourneys from Beaton to the mine daily. Assuming continuous hauling over some consicerable period of time - such as would be the case if importent plent construction work were under way - a reasonable cost expectation would be about 87.50 per ton.

The matter of providing this roed link - thet is the. road from Trout Lake City to the mine - is an imperative requirement if aerious and important development ond production operations are to be underteken.

The Conedian Pacific Feilwey operates a stemer service between Arrowhead and West Robson et the south end of the Arrow lakes and this route not only provides an eltemative avenue of access to the lardesu erea from the south but makes available a cheap and direct route for mine and mill products destined for the Trail smelter.

The third route is from Nelson via the Kootensy lake. Cer-lot shipments mey be delivered via berge to Lerdeau at the north ond of the Kootenay leke. From here a road follows the Lerdeau river valley north westerly to Gerard - a hamiet at the sie end of Trout leke some 35 miles distent from the Kootenay leke point. The weter distance, Gereld to Winslow landing, is 12 miles .

On the properties good treils extend from Vinalow to the Okenagen, Leed Queen and other clains to the north and east and to the Alice and other cleims to the south exst.

At the present time the nearest telophone and telegraph fecilities are at Beaton. Formerly Winslov operators enployed two-wey radio telephone for communicetions.

The access and trensportetion route considered most economicel in so far as the operation of Winslow Properties is concerned - nemely thet extending from Beaton, through Trout Lake City to the mine - is probably most easily understood by considering Kinslow to be 24 miles by road from tho heud of

 and Trout Lake cen be kept open efter stoms by bulldozer. The mountain road can also be kept open by the seme means. It would, however, most likely be necessary to maintain a bulldozer or motor-plow at the mine and to send it cown hill to clesr the road efter severe storms. This, of course, is well-knowi practise at other mines in the Kootensy region.

REYERENCES

Numbers of the minersl claims of हinslow Properties are deseribed in the Arnusl Reports of the B.C. Minister of Mines sad in two publications of the Cenadion Geological Survey. A list of these references is ss follows:

Miniater of Mines Reports: inslow:

$\frac{\text { Year Pege }}{1904-118}$	$\frac{\text { Year Pege }}{1909-101}$		$\frac{\text { Year Peqe }}{1933-216}$
$1906-138$	$1911-154$	$1934-426$	
$1908-101$	$1914-309$		
$\frac{\text { Okahagan }}{1914-310}$	$1915-450$	$1918-156$	

Alice, (Foscy Day)
1917 - 165 1922 - 217 1931 - 151
1918 -- 157 1923 -- 234 1934 - B36

1921 - 161 1930 - 267
The most comprehensive descriptions are given in the M, of M. Report for 1914.

The physicel features and geology of the Lexdesu area is described in the C.G.S. Summary Report for 1903 by K. W. Brock end, more recently, in the excellent and most comprehensive C.C.S. Memoir 161 by Drs. J. F. Welker, M. F. Bencroft and H, C. Gunning. Perticular reference is made to this Menoir and to the geologicel map which accompanies it.

HISTOK

The Winslow vein eppears to have been discovered and the linalow and Gladhend claims staked about the yeer 1904. Gold velues of pronise wexe, presumbly, discovered in "float" and the vein subsequently located beneeth overburden by trenching. Most of the development vorto was done between 1908 and 1911 . In the M . of M. Feport for 1911 it is stated thet large bodies of ore of satisfactory grade hed been opened. The No. 3 tunnel, which represented a successful attempt to locate the vein at a new low-level horizon, was driven in 1911. Disagreement anong the interested parties end leck of cepitel are said to heve been responsible for the long period of inactivity which followed. Minor, but epperently short-lived, activity is reported as having occurred in 1935.

Early in 1938 Mr . W. J. Scorgie obteined a leese on the Winslow, Gladhend and Okanagen claims. He opened high grade ore on the Nos. I end la levels of Winslow and dia considereble development. Lete in 1939 \& syndioate was formed, a amell mill was built, end a small-soele production ves cerried on until the autumn of 1941.

There was considerable prospecting interest in territory at the head of Laughton oreek in the early days. The Fogey Dey claim wioh, I believe, is nov included in the Sunshine elaim, is said to have been first staked ebout 1905 or 1906. A considereble emount of work wes effected in this srea. Its rugged location and trensport difficulties, hovever, reterded sericus development. In 1917 and 1918 some 18 tons of hand-sorted ore wes shipped which essayed about 3.6 ounces gold to the ton. At that time the claim wes owned by Mrs. Jowett of Ferguson and it hes at verious times been under consideretion by mining interests.
B. W. V. MoD. (Init.)

At the present time e Compary is in process of being orgenized to develop the two cleim groups whioh are under consiceration in this report.

GEOLOCY

The Silver Cup mounteins are centrelly loceted in a belt of lote Pre-Cambrian sedimentaries locally known as the Lerdeau Series and co-related with the Windemere Fomation which occupies relatively large areas elsewhere in the eastern part of the Province.

The Lerafeau Series occupies a well-defined belt, about 13 miles wide in the vicinity of Trout lake and the Silver Cup mounteins, and strikes in a NW - SE direction. The rocks include quartzites, phyllites, ohloritic achists, carboneccous schists, slates and limestones all metemorphosed in varying degrees. Structurelly they form a major syncline with numerous minor folds one of which appeers to constitute a minor anticline folded into the general inverted structure.

These rocks are intruded by numerous greenstone dykee which are co-related with the Kaslo volcanics of Irisasic sge. These dykes, however, ere not recognized es having had sny criticsl or importent control of ore-body emplacements.

The Lardea Series together with narrower flanking width of otill older rocks are very nearly encircled by grentic rocks of the Nelson end Kuskanax batholiths - the former being the older and both believed to be of Mesozole ege. The Lardeau Series rocks bre thus considored as occupying a great besin in the intrusive fomations and at some, but unknown, depth the ontire ares is underlein by the plutonic rocks.

Ore-bearing solutions and emanations which formed the ore bodies of the district ere considered to have hed their origin in these underlying granitic plutonics and are generally considered to be Mesozoic (Jurassic or enrly Cretsceous) in sge.

It is inferred that the mejor folding and deformetion of the Windenere rocks ocourred es e result of the Nelson end Kuskenex betholitic intrusions. The frect ring of the metemorphosed bedded fomations which gave access to mineralizing solutions is visuelized se having been exceedingly complex. quartz veins cerrying commercial values in cold, silver and other metels ocour throughout on altitude interval rangiag from Trout Lake to the sumit of Silver Cup mounteins - or more than one mile.

Referring to Mep 235A which accompanies C.G.S. Memoir 161. it will be observed that some 23 of the 88 mining properties or minerel cleims described oceur in that 'circle-segnent' ares of Silver Cup mountains. On the upper Sll slopes of these mountains where the Winslow clains are, for the most part, situated the general strike of the schistose formations is about $\mathbb{N} 450 \mathrm{~W}$. The dips exe mostly NE though, due to locsl folds, the angles vary through a considerable ronge. Quartz-sulphide veins occur cutting the achiats at varying angles- others appear to follow the beds. Ore ghoot locelizetion, in some instances, appears to be due to mechenicel efrcumstences such as abrupt changea in strike or dip with resulting constriction or daming tendancies to penetrating ore solutions. In other instences chemicel reasons - such as the mingling or solutions et vein crossings - seem to be indiceted.

The Vinslow properties are located, geologicelly, on the sW limb of the great symelinal structure. The veins are cheracteristically golc-bearing in contrast to the predominantly silver-bearing nature of veins on the NE side of the Silver cup mountains.

DESCRIPIION OF MINE WORK IGGS AID VEIN OCCURRENCES.

There are no properly prepered maps showing the mine woxinge or the seversl known vein ocourrences with reference to property bounderies and the time of the examinetion wes insufficient for meking detailed Brunton surveys. Severel sketches accompenying this report are for the purpose of recording ny semple locetions and ssseys end to present a generel, epproximate, picture of the principel workings.

In respect to the altitude figures eiven, these sre somewhet higher than those reported by others. They were obteined from anoroid reading and, at least in respect to eltitude differences, ere believed to be resanably correct.

VINSLOW:

The Winslow vein hes been explored and pextly developed at four horizons and an incomplete sttempt his been made to locate it it is still lower horizon. It outcrops, for the nost pert if not entirely, beneath faily heavy overburden. It ocours on the right (Northerly) slopesctBurg creek valley end it strikes in a direction dagonel (roughly 450) to thet of the oreek course in the V-notch of the velley boitom. It has been reesonably proven to be continucus over a length of more than 400 feet and through a vertical intervel of more than 300 feet - its goneral structure and appearence at both ends and at the deepest point where it has been exposed are such that it mey reasonebly be expected to persist on both dip and strike unless it should happen to be disloceted by feulting. Its totel width is exposed in only two or three places,- these being in the No, 1A tunnel. Two crosscuts show the vein to be in two sections ageregeting sbout 1.2 fect in width. The sections are separated by a bond of schist from about 1.5 to 4.0 feet in width. The approximate strike ie $\mathbb{N} 100 \mathrm{E}$ and the dip from 55 to 70 degrees NE.

The upper or No. 1A tunnel, at on eltitude of 6,780 feet, has been driven on the foomwall section of the vein from the portal to the present face, a distence of 1.78 feet. Near the portel it spparently intersects end pesses through a 10 -foot vein which has a strike of sbout S 780 W . This crossvein hes not been prospected but about 100 feet distant westerly from the tunnel. portal there is an accumulstion of limonite which apperently is being built up from pyrite leached from it.

The tunnel back has been stoped to the surface from the portel to about the 50 -foot point. A raise has been driven about 32 feet from a point about 150 feet from the portel and from the top of this raise two "Y" brepches, each more than 50 feet long, have been extended. The reise sid its two brenches sre all in the footwell seotion of the vein which eppears to heve an aversge widh of five feet or more.

The gangue consists lergely of euertz which, in places, shows some sheeting. There are small amounte of carbenates. Sulphides present are largely pyrite with very ininor amounts of gelene, sphalerite and chelcopyrite. The pyrite occurs in discontinuous streaks, irreguler bunches and diseminetions ond is not at all unifomily distributed. In ore shoot vein erees free gold is present. For the most part this gold is believed to be intimately essocieted with the pyrite but it does ocour in the quartz removed from sulphides es well. Comortiel values appear to occur in definite shoots separated by lean or low-grade vein areas. Conveniences were inadequete for a complete sampling of the drift backs and reises. Sempling conducted wille the drift wea being driven in 1939-41, 58 conteined in the records of the Syndicate, indicate a general overage of $0.77 \mathrm{oz} / \mathrm{t}$ in gola ecross an average width sempled of 5.8 feet. Presumebly, however, sone of the semples included were from the small stope bolow end above the level. The general average is probebly considerebly less then this figure. A prelimizery estimete of betiven 0.3 end $0.4 \mathrm{oz} / \mathrm{t}$ in gold is suggested. A complete 5 -foot intervel sumpling of thece woricings
is required.
Syndicate records of sempling in the main stein of the "X" raise gives an average gold content of $0.23 \mathrm{oz} / \mathrm{t}$ across an averege width sampled of 5.6 feet. Information from the same source indicates avereges for the eest brench of the "Y" of $0.49 \mathrm{oz} / \mathrm{t}$ gold across an average width of 5.6 feet and of the west brench 0.19 oz/t gold ecross an everage width sempled of 7.6 feet. The total number of samples irom which these raise everages have been computed is 61 . As already noted the hengingwall section of the vein is exposed by crosscuts only in two pleces end this hangingwall section appears to be of sbout the same width sas the footwell section. The resulte of my own sampling axe indiceted on e sketch mep accompaning this report.

The No. 1 level is et हn altitude of 6,740 feet, - of ebout 40 feet below the No. 1A. This level is ceved and ineccensible. IKr. Scorgie has informed me thet he encountered ore at a distonce of 12 feet and thet the tunnel wes advenced a distance of about 50 feet to the epperent end of the hach grade shoot which wes about 40 feet in length. This high grade was mined out to the No. is level and above this, agein, to the surfece. Of this ore 85.19 tons was sorted out and shipped to the smelter. The total gold content is given as 187.038 ounces or an average of 2.0 ounces to the ton. The remeining ore together with from $300-400$ tons (estimeted) of old dump ore was put through the smell mill snd velues in both concentretes and bullion were recovered. Mill losses probebly epproeched 40%. The totel , mount of gold conteined in the crude ore, concentrates and bullion aggregated about $\$ 24,000$. There is sone reason for believing that the emplecement of this perticuler ore shoot wes due to the intersection of the Winslow vein with the cross vein. in averege of some 47 samples from the level and from the small stope (now filled) above it, representing an average width of 5.5 feet averaged $0.62 \mathrm{oz} / \mathrm{t}$ in cold according to the syndicate records.

The Winslow No. \& level is caved and inaccesaible. It is the mill level horizon and et an eltitude of 6,640 - some 100 feet below the No. 1 level horizon. The tunnel is said to be e orosscut for the firet 160 feot of its length. The vein was cut at this point and was drifted on for a aistance or ebout 30 feet. Vein vidths of 6.5 to 10.0 feet are reported but the assays given in Eyndicate records are loweveraging ebout $0.0402 / \mathrm{t}$ in gold. The vein, however, jucging from the dump materiel. is sinilar in charscter to that found elsewhere. It may bo thet the dowmexd extension of the No. 1 level ore shoct should be seerched for to the south rather than to the north of the entering exosscut.

The No. 3 level is at an altitude of 6,540 feet. It is a crosscut driven from the mid-slopes of the Burg creek slope. It intersects the vein at a distence of about 300 feet (paced) from the portel. Only the footwell aection 52 inches in width is exposed. It is of herd quartz ehowing slight treces of sheeting and 11 ghtly mineralized with disseninated pyrite. Several thin streaks of siderite or ankerite sleo occur along sheeting planes. A very heavy flow of water is continuously weshing over this vein exposure and it could not be sempled deeply on account of its extreme hardness. My one sample, teken acroes a widh of 52 inches asseyed $0.0202 / \mathrm{t}$ in gold. Semples reported in Syndicets records are given es follows:

No. 1. Select pieces from broken vein meterial showing gelene, 1.08 Oz Au.
No. 2. Generel semple of materisl broken from vein,
0.24 "

No. 3. Select pleces of heevier then usual pyrite,
0.53

No. 4. Schist on well of vein,
This edit, except for the portel timbering, is in good condition. It hes located the vein et the most southerly and deopest point yet known end, from appesrances
B. W. K. MoD (Init.)

It is quite es strong as in the upper levels.
The Fo. 4 tunnel has been dxiven from a point near the bottom of Burg ereek valley $8 t$ on elititude of about 6,240 feet. It is about 300 feet in length, (paced), and it has been driven in en easterly direction. A short raise has been driven at the end evidentiy in a 'last-minute' effort to come under the footwell of the vein. The altitude of this tunnel is about 540 feet below thet of the upper or $1 A$ tunnel. Tais is the adit mentioned in the M. of M. Feport for 1914 as being under way when opereting funds beceme exhausted. Except for the portal timbering the working is in good condition. It is impessible vithout surveys to estimete how far it would be necessery to extend it in order to intersect the strike of the vein. From a rough eatimate it should not be more than 100 feet.

It aight be stated at this point thet deuper vein intersections then the No. 4 tunnel horizon will involve relatively long crosscuts since the presumed strike of the vein is such thet it should cross to the opposite aide of the guich not far below and its further course southerly should be inte the south flenk of the guloh. There is e good site for a mill se short distince below the No, 4 portel. In the ssane cenersl vicinity there ere good sites for mining plants and camps. The locality is in fairly heavy timber end quite free from snow sildes. fiso the aites, are more readily accesaible, with reference to vinter trensportation, thon sre the present sites near the portsl of the No. 2 tunnel.

Northerly or uphill from the No. 1 adit portel the terrsin continues, on en sven grede of ebout 25 degress to the pleteau sumait at en oltitude of sbout 7,500 feet - or somewht more then 600 feet above the No. IA tunnel. There are two caved tunoels sbove the No. IA but it is impossible to determine whether or not these have intersected the vein.

The altitude range from the No. 4 level to the sumat of the plateau is thus more than 1,000 feet. Assuang that ore shoots sre loasted by preliminary development the agsregete vein eres between the two horizons is lorge and the velley. locetion for plents end cemps would merit favoreble consideretion.

LBAD GUERN.

This claim is on the NW corner of the Winslow group st the head of Sheron basin which drains NE into Cup oreek. At an elevation of 7,460 foet st tumael has been oriven into the ridge in a direction about $\$ 76^{\circ} \mathrm{W}$ end at verticel aistance, (estimsted), of sbout 200 feet below the sumit. The locelity is practicelly without trees and the slope ebove and below the portel evergeg more then 40 degrees. The vertical distance to the basind below is probably sbout 800 feet and the strike of the vein is neerly normal to thet of the mountain slope, Thus a drift tunnel at a depth of 200 feet below the present one is possible. The tunnel is ceved tight et the portel. It is probebly somewhet less then 100 feet in longth. It represeats the work of a prospector working intermittentiy over a considerable period of years. Several tons of ore had originally been eccumuleted at the portal but most of this has been swept down the mountain side by a snow silde. The vein could not be seen except at some distpnce down the steep slope. It is seid to be 4.0 feet wide in the tomel face and to be "good ore". It appears to cut scross the bedding planes of the schist at en ongle of ebout 25 degrees. The bedding plenes of the encloaing rocks are lightly \bar{y} ritized for distnnces of 15 feot or more from the veln. Severel smell quertz etringers also invede the bedding planes for short distences. The ore is ontirely different from that of limslow end reeambles, gerereliy, that occurring on the silver Cup property. The gengue is largely quartz with vexy minor carbonates and the oulphides include pyrite in bunches and dissomivations and coaree-grained
gelene in sansll masses. A selective sample cexrying abundant galene returned an sesey of $0.14 \mathrm{oz} / \mathrm{t}$ gold and $60.0 \mathrm{oz} / \mathrm{t}$ silver, -(Semple No. 22). Semple No. 23 carrying very little sulphides asazyed $0.03 \mathrm{oz} / \mathrm{t}$ gold and $0.75 \mathrm{oz} / \mathrm{t}$ allver. There was no wey of detemining the proportion of gelena in the ore. Presumebly this vein may be expected to contein silver to the amount of ebout one ounce to the percent of leed.

It would be possible to frolght ore from this vein across the platecu swmit to the Winslow site but there would be some considereble expense for a road. Should further development indicate importent ore bodies a seperate operation, conducted. from the Sazron basin side, would doubtless prove more econonical.

OKANAGAN:

The Okenagen and Enderby claims are entirely above timber and much of the surfece is without vegetation of any sort. The surfece slopes at a low sngle but, due to elacisl gougen, is somewhat rough and rageed - ruch of it is without overburdon and the locslity offers splendid opportunity for geologicel study. There are abundent quertzite beds and berren or low-grade quartz veins. At the time of my exemination of this locelity it wes fogey end mowing and visebility wee low end I wes unable to do more than examine the mein Okanagen showing.

On the Okanegan cleim at an elevation of 7,725 feet e well-defined quertz vein which cuts across the bedding planes of the enclosing schists has been rather extensively prospected over a length of about 200 feet. The atrike of this vein is in the approximate ahape of a gentle arc; at the northern ond it is about $\mathrm{N} 10^{\circ} \mathrm{F}$ and st the southerly end about N $35^{\circ} \mathrm{W}$. Observed dips are from 57 to 65 degrees eseterly. Workings include two shafts, esch ebout 14 feet deep, two $\mathrm{V} / \mathrm{cuta}$ driven on the strike of the vein and some stripping elong the outcrop. The vein is from 1.5 to 4.5 feet in width end the principal sulphide present is pyrite which is irregularly distributed throughout the quartz. The most northerly of the two shafts, being filled with water, was beiled out for inspection. A somewhet unusual feature of the vein at the ahaft bottom is a "bulge" of quartz outside of the well-defined hengingwall of the vein. This "bulge" cerries an unusually large amount of chalcopyrite and sphalerite. Semple No. 28, teken from this occurrence across a width of 1.2 feet, returned en essey of $1.68 \mathrm{oz} / \mathrm{t}$ in gold. Other semples teken from this shaft and from the neer-by U-out, (Samples 24 to 30), all ourried more or less important gold values. A crosssection sketch of the prospect workings showing sample locetions and esseys is atteched to this report. Semples teken from the southerly shaft and U-cut returned only low values. To the northwest the vein appeers to lose its identity ofter a distence of about 200 feet from the workings, - to the southesst it eppeers to nerrow for some distance beyond which it widens and is seid to be treceable for a long distanee.

Doubtless the surface of these two cleims hes been extensively prospected in years gone by since vein end quartzite outcrops occur in profusion and, due to the absence of overblurden, they can easily be traced.

I have been personally informed by Mr. Janes Min, one of the miners concerned, thet in 1940 about 5 tons of ore was mined, hand sorted and shipped to the enelter and that the gross returns were ebout $\$ 750,00$. Snelter return sheets which form part of the byndicate records include three settlement wheets deacribing ehipments eggregating 2.77 tons which contained 10.128 ounces of gold,- or an everage of $3.6 \mathrm{oz} / \mathrm{t}$. A crosscut tunnel vas commenced years ago to open the vein at a depth of from 80 to 70 foet bolow the outcrop. This morking hes not, however, reached its intended objective. A disedventage of this vein and of possible other gold-beering occurrences on the Okenegen and Enderby claias is thet important developnent can only be effected through shafts. Development work oen reedily go forwaxd during sumers
B. W. W. MCD. (InIt.)

Lut winter operations would require expensive preparstions. Ore produced in these locelities could, however, be trucked in sumers or toted in winters to e mill on the Winalow or Gladhand claims.

ALICE:

A good horge treil leads from the Vinslow eamp and plent aite, folloving the SW aide of the Silver Cup sumaits, to the southesstorly group of Vinslow properties. The distence is about 3 miles. This treil gives acceas to the pess leeding to Brown oreek which drains easterly to Lardeau oreek. It is used, incidentelly, by people trevelling from Trout Leke to the Cromwoll and other claim eroups on the ebsterly side of the renge.

There was snow st the higher sltitudes when I insyected the woricinge on these cleims and it wes impossible to visit certain eurface exposures on precipitous slopes.

The Alice showings occur on the stegp slopes at the head of the upper glaciel oirque end et the head of one of the tributaxies of Leughton oreek. Fock spells and slide debris extend upverds for several hundreds of feet sbove the floor of the cirque, fibove this, egain, bare cliff - aloping at engles approsching 60 degrees - extend to the sumit of the ridge. Almost st the top of the line of rock debris and tt the foot of the escargments thexe are four short tuanels more or less peral. -el to eech other which partly expose a flat-dipping vein. This dips es,gterly, into the ridge, et verying degrees but the everage Engle appesrs to be ebout 15 degrees.

The most easterly of these tunnels is sbout 75 feet in length. It commences in the footwell rock - axcounters the vein et the $60-f \circ o t$ point - end continues across the downward-dipping vein some 15 feet to the face. The strike is about $\mathbb{N} 070$. While the vein appears to cut across the bedding plenes of the enelosing schists it is apperent thet it has a somevhat 'rolling' dip indiceting thot the bedding planes of the host rocks heve had important influence on the developinent of the vein fracture. Smples 1 end 2 were telcon from the vein in this tunnel. While the esseys show only low gold values it is evident thet some high grade ore wes oncountered in the vicinity. The original pyrite content of the quartz is largely oxidized. The vein, in this tunnel, is about 2.5 feet in width.

Tunnel No. 2 is about 50 feet northwesterly from the No. 1 and about 15 feet higher. It is ebout 50 feet in length with a crosscut 15 feet in length. It intersects the footwall of the vein at about the $25-f o o t$ point and continues on it for a distence of 25 feet. The vein is from 2.0 to 2.5 feet in width. Semples 3 to 6 , inclugive were tbken from this working epproximetely as indiceted in the aketch mep attached to this report. Semple No. 7, which sssayed $3.50 \mathrm{oz} / \mathrm{t}$ in gold, was a grab from sorting rejects.

Tunnel No. 3 is sbout 25 feet northwesterly from N. 2. It is 35 feet in length and, roughly, 5 feet higher then the No, 2. Its courge is $\mathbb{N} 200 \mathrm{E}$ and near the face the vein rolls abruptly downwards, (Kasterly). The dip elaewhere is sbout 180 k . The width of the vein veriea from about 1.8 to 2.0 feet. Semples 9 and 10 were teken from this working, - both carried attractive velues in gold.

Tunnel No. 4, some 12 feet in length, is about 30 feet northwesterly from No. 5 end ebout 5 feet higher. The vein is 8 inches wide in the fece and it dipe 10 degrees easterly. Semple No. 10 , taken from the fece across an 8-inch width, returned an essey of $0.40 \mathrm{oz} / \mathrm{t}$ in gole.

During 1917 and 1918 a totel of 18.242 tone of hend-sorted ore wes shipped to the smelter from these workings. Smelter roturns have a total gold content of 66.479 ounces or en everage of $3.63 \mathrm{oz} / \mathrm{t}$.

SUNSETME:

At an elevation of about 7,800 feet a tunnel, some 77 feet in length, hes been driven on a cuartz vein from 2.0 to 5.0 feet in width. This vein, also, dips gontly but at the face, due apparently to the influence of rollitg sehist beds, It rolls over to a 45 -degree eesterly 0 ip. Semples 11 to 15 , incluaive, were taken from the vein es exposed elong the wells of this tunnel. Semple locetions and esseys are indicated on an accompanying sketch.

This vein is similar in cherecter to the "blanket" vein of the Alice claim and it is quite possible thet the two occurrences are reelly one and the same vein. The two localities are posaibly nearly 1,500 feet apart. A pit on the Alice Frection claim, some hundreds of feet on the opposite or northeriy side of the four Alice tunnels, elso discloses a flat-dipping vein. While there is no certeinty thet these three locelities all expose the ssme vein the general character of the occurrences and the chsracter of the minerelizetion sugcest the possibility thet such is the cese.

The development and possible exploitstion of these Sunshine end $k l i c e$ occurrences presenta a somewhat difficult problem. The Alice Fraction ond could be explored by dismond drilling. Comperatively short holes would be reguired. Elisewhere, howevex, leck of water, difficult terrain and shattered cover rocks would seem to preclude diemond arilling as an explopation method for locating the exact position of the vein.

The most desirable method of developing would bo by meens of a drift tumnel. This would be reasonably setisfectory provided so feulting oocurs. But sudcen changes of dip woule necessitite tbrupt engles end turns in the drift. The conditions of topography end snow ere such thet development could only be carried on duping the sumuers and from ec camp possibly situsted aome distance avay and, likely, several hundred feet lower then the working sites. On the other hend the vein corries high grade gold-bearing ore and further study accompanied by surveys and mapping will doubtless result in determining the best snd most economicel methods of solving the probleme. It might be mentioned thet there is un old treil leeding from Irout leke, up Laughton creek velley, to the oirque.

BLACK PINE:

At an altitude of. 7,500 feet and on the northerly xidge rin of another cirque southerly from the Laughton creek one, a shaft has been sunk and opencuts excervated on a strong quartz-sulphice vein. The sheft sppears to be sbout 25 feet deep and the vein from 3 to 5 feet wide. The strike is ebout $N 550$ E or neerly at right angles to that of the schists. Semples 17 to 19 sie non-selective grebs from dump materisl at the shaft. This vein is said to be traceabie in both directions from the shaft exd over a total distence of poesibly more then 3,000 feet. At the time of my inspection we were under the impression that the vein treverses the Black Pine claim but subsequent infometion suggests that it is on the I.X.L. cleims. In any evout the up-hill extension of this vein may reesonably be expected to traverae the Balaam cleaim of the Winsiow Groups. The principal reason for meking mention of this particular vein occurrence is to indicate that there are other minerel showings on this old "Fogey Dey" territory which have es yet recelved only prospecting ettention. It would require a month's time with surveying equipment to adequately study this interestin ares.

During the past 40 years many mining exgineers and others have examined and prospected these old claim locetions. This is the first time, however, thet the groups, now under consideration, heve been sssembled under comion ownership. Undoubtedly much informstion conceming veine, ore end geological detsils hea been obteined throughout the yeare and this would be very useful now. It will be understood that the descriptions given in foregoing peragraphs are lexgely from the results of explorations and developments effected since 1938.

CONCENITMG METALIURGY

With the single exception of the Lead queen No. I silver-lend occurrence all the known ore occurrences on Winslow Properties exe, primarily, gola-beering. Also, these veins, though separated by s distance of as much 385 miles, are remarkably similar with respect to gengue and sulphide minerals. The gengue is universelly quartz with, occsaionslly, very minor csrbonetes and without included silicified country rock. The principel sulphide is pyrite - in some instences it is the only sulphide - in other pleces the veins carry minor amounts of gelene, blende and chelcopyrite. Gold is believed to be associated lexgely with the sulphide minerals though smell pertickes of free gold mey occasionsily be seen in the quertz ontirely removed from sulphides.

These ores may be expected to yield a high gold recovery by eyenidetion and, in view of the general economic conditions preveiling et the property, this process, in spite of the higher first cost for a mill, would seem to be the niost suitable. However, in the event thet ore in sufficient amounte to worrant milling is developed, en ore test by competent euthority is escentis to determine precise processing deteils and generel flow-sheet design.

The present mell mill was obviously designed to selvege nhetever values were easily obtainable. The mill, of nominal $25-t o n$ oapacity, is equipped with a amall jaw crusher, $4^{\prime} \times 4^{\prime}$ cylindricel ball mill, homemade clasaifier - short amalgemation plates end a Wilfrey table. It is belt-driven by as 25-HP Gerdiner diesel engine. Detells concerning ite metallurgioal performance are unaveilable but it seems unlikely that its gold-saving efficiency could have much exceeded 60%.

CAMPS

At an earlier time the property had good and, presumably, adequate living accomnodations for a substantial working crew. These are now collapsed. Besides a smell shop, store house, stable end the mill the only other building on the property is a amell log cabin whioh will accomodate three or four inen. In the event that an important development operation is to be eateblished modem cemp buildings auitable for a crew of 20 to 30 mon are imperative. The cost of providing such acommodetion is estimated at $\$ 10,000$ ond this figure assumes the evellability of lumber from a aource on or mear the property.

RECOMMENDATIONS

Whatever subsequent developnents on these properties mey disclose, the Winslow vein, from present knowledge, is properly to be considered es the outstanding mineral showing. It has been demonstrated to be comeroielly gold-beering end it is unususily large in width. Moreover, its locetion is euch that vein becks of more then 1,000 feet erc obtainable with only short orosscut drives. The development sites are already accessible by tractor rosd and development from st least three horizons can be commenced bs soon es facilities and equipnent have been provided. I em of the opinion
B. W. W. McD. (Init.)
that preliminery development of these properties should be chiefly concerned with drifting on the Vinslow vein at the three horizons. Opinions es to the proper and precise proceedures will, doubtless, differ but the preliminary objectives are clear-cut. The following steges of proceedure are intended as tentative euggestions and are, of course, subject to alteretion or modification to suit such ohenging circumatances es mey arise:

1: Repair and edvence the No. 4 sdit to its intersection with the Winslow vein. By aeans of proper surveys deternine olosely where such intersection should occur, so that in cese feulting may have occurred, useless driving may be avoided. This work, I think, should be done by hand-mining methods and as early a in the season as possible. This work atage ahould be considered completed as soon as the vein is cut.

2: If the vein is successfully located at the lo. 4 horizon and if it is favorable in respect to its generel appearance, prepare to make this No, 4 horizom the main working level.
3. Erect camps in the velley bottom convenient to this portsl site.
4. Instell a diesel-driven compressor, preferably a unit of adef̨uete eapacity to operste two rock drills and a drill sherpener. Provide sll other instellations and equipment necessary for mechine mining.
5. Woriking on a basis of two drills two shifts daily on the $1 \mathrm{~A}, 5$, and 4 horizons effect a minimum of $z, 000$ feet of drift development on the Vinslow vein,

The cost items of effecting this work would include the following:
a. Pulchase or tental of tractor and bulldozer.
b. Widening roed from Trout Lake to Winslow.
c. Builaing short length of new road to No. 4 site,
d. Providing cemps for minimum of 20 men.
e. Installation of diesel-ariven compressor.
f. Installation of steel-sherpening equipment.
g. Installation of weter and sir lines end of miscl. equipment.
h. Purchase of rock drills and drill steel.

1. Driving 2,000 feet of drifts.

It is estimeted that this progrome would require a minimum of $\$ 75,000$.
A less embitious programe, which merits consideration, would involve the installetion of a $250-\mathrm{cu}$ ft compressor, the use of one arill two shifte delly and a totel of 1,500 feet of vein development. On this besis the completed projeet may be expected to cost a minimum of $\$ 60,000$.

Another alternative would be to employ a diamond drill for a full season to teat for vein locations end continuetions. In a vilin of this type it vould be unwise to rely on core and sludge assays for values aince it is already indicated that the ore occurs in definite shoots in the vein areas. Assuning a minimum of 4,000 feet of drilling, together with the surveying and mepping of the drilling, veins and mine workings, the anticipeted cost would be about $\$ 25,000$. I personally favor arift development even if only the sualler equipment is employed. It is of course essentiel that the mine workings be surveyed, properly sampled and assayed.
B. V. V. McD. (Init.)

In respect to the other vein occurrences on the properties more careful study cen be made of these wille conducting assessment vork. In due course, if conditions warrent, seasonel development with or without a light compressor can be underteken.

CONCLUSION

In Hy opinion the Winslow and Associated Mining Propertios warrent importent exploretion and development more or less along the lines indicated in this report. Because of its important width, its steeply-dipping ettitude, its known gold-bearing oharacter and its relative accessibility I bolieve that initial cevelopment should be conducted principally on the Kinslow vein. Subsequent proceedure would depend on the results disclosed by this work.

Fespectfully Subaitted,
B. W. K. MoDougell

Consulting Mining Engineer.

416 Bank of Nove Scotie Building, Vencouver, B.c.
November 12 th, 1946.

(SEAL)

Professional lingineer
B. W. W. McDougall

Wining Fingineer, Province of British Columbie
J. R. WILLIAMS \& SON

PROVINCIAL ABSAYERS BASEXENT, ARTS \& CRATMS BLDG.

576 SELHOUR STREET
Vancouvir, B. C.

October 10th, 1946
RESULTS of A saeys mede on samples of ore submitted by: B. W. K. Molougell Esq., M.E.

MARK \begin{tabular}{cc}
Gold

Ozs.p/t.

Silver

Ozs.p/t.
\end{tabular}

WINSLOW BINS
Semple No. 1.
2.
3. $\quad 0.50$
4.
5.
6. 0.19
7.
8. 0.50
9.1 .54
10. 0.40
11.
12. 1.22

13.	0.06
14.	0.04
15.	0.15
16.	0.02
17.	0.42
18.	0.10
19.	0.14
20.	0.05

0.05
1.40 trece
5.40
2. 60
0.20

$$
9.80
$$

Widths

$$
0.95
$$

$$
2.60
$$

$$
0.40
$$

$$
0.15
$$

3.40
trece
trace
trace
trace
2.70
0.70
1.10 Grab
trace

Locetions
1.5 Alice M.C. No. 1 tunnel, 60^{\dagger} from portel
1.4" " " " opposite No. 1
" n No. 2 "
end of X-cut
2.5 " " " n wall of X-cut
2.1" " " " well beyond X-cut
1.9" " " " ${ }^{\circ}$ " end of stope

Grab n n Sorting rejects at tumnel portal
1.2" " "No. 3 tunnel, left side of well
1.9" " " " $n \quad 20$ eromportal
0.7 n n No. 4 n face
5.0' Sunshine 4. C. Tumel - 5' from portel
3.1" " " \quad " -15° n n
$4.0^{\circ} n \quad n \quad n \quad-24^{\prime}$ " \quad "
$\begin{array}{llllll}2.0^{\circ} & n & n & n & -35^{\prime} & \text { from portel } \\ 2.9^{\circ} & n & n & n & -48^{\prime} n & n\end{array}$
1.9* $\quad 9^{\circ} \quad n \quad$ Vertical vein 60° E from tunnel

Greb Blahck PIVE Of I.X.L. Non select from shaft dump

| Greb | n | $"$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Grab | n | $"$ |

Grab Vinslow M, C. Old aump above la tunnel

Sheet lio: 2.

J. R. VILLLIAMS \& SON

PROVINCIAL ASSAYERS
BASRYENT, ARTS \& CRAFIS BLDC.
576 SEYMOUR STREET
VANCOUVER, B. C.
October $10 \mathrm{th}, 1946$
RESULTS of Assays made on samples of ore subinitted by: B. W. W. MeDougell Esq., M.E.

MAFK	$\underset{\substack{\text { Gold } \\ 0 \mathrm{zs} \cdot \mathrm{p} / \mathrm{t}}}{\text { and }}$	$\begin{gathered} \text { Silver } \\ \text { Ozs.p/t. } \end{gathered}$			
WINSLOW MINE					
Semple No. 22.			Widths		Locations
	0.01	trace	Greb Winslow M.C. from old dump ebove No. 1A		
22.	0.14	60.00	Grab I	Lesd queen No. 1 M.C. Select gelene from dump	
23.	0.03	0.75	Greb	" n	" quertz from dump
24.	1.16	0.70	1.910	Okenagen M.C.	face of N U-out 5^{\prime} below surface
25.	0.32	0.30	$1.2{ }^{\prime}$	"	bottom of N U-cut
26.	0.40	0.35	1.97	" "	botton S end of N ghaft
27.	0.40	0.35	2.0 \%	"	bottom N end of N sheft
28.	1.88	0.80	$1.2{ }^{\prime}$	"	HW bulge et bottom N shaft
29.	0.24	0.20	$1.9{ }^{1}$		\mathbb{N} end of \mathbb{N} shaft 5° ebove bottom
30.	0.12	0.40	1.81	"	S end of N shaft 5^{\prime} ebove bottom
31.	0.08	trace	2.0 \%	" *	surfece cut 30^{\prime} south of N shaft
32.	0.09	2.40*	$5.8{ }^{\prime}$	" ${ }^{\text {n }}$	N end of $\$$ sheft 4^{\prime} ' below collar
33.	0.04	trace	$4.0^{\prime \prime}$	" \quad "	S exd of S sheft 10^{\prime} nelow coller
34.	0.025	trace	4.3 '		face of S U-cut 3^{\prime} below surace
35.	0.05	0.20	$10.0{ }^{\prime}$	Winslow M.C. No.	0. IA tumel - X-vein near portel
36.	0.08	trace	$3.8{ }^{\circ}$	" n	" \# HW in X-C 125* from porto
37.	0.10	trace	4.6 '	" "	* FW at 125* from portal
38.	0.07	trace	5.21	" \quad	" Face of drift, (IV vein)
39.	0.64	0.45	5.11	" "	" If wine Y raise lit from
40.	0.37	0.60	8.01	"	" W wing Y raise at top.

Assays made by

File No. 76685/727.
Sheet No: 5.

J. R. VILLINGS \& BON
PROVINCIAL ASSAYEFS
BASEMENT, AFTE \& CRAFIS BLDG.
576 SEYMOUR STREET
VANCOUVER, B. C.

Oetober 8th, 1846
RESULIS of Asseys made on samples of ore submitted by: B. T. W. McDougall, Esq., M.E.

OKANAGAN MC.
Sketch Section in Plane of Vein Showing Sample Locations and Assays. Scale $I^{\prime \prime}=20^{\prime}$
at. 19×6.

$$
\begin{aligned}
& \text { ALICE. MIC. } \\
& \text { Sketch Plan of } \\
& \text { the Four Tunnels } \\
& \text { Assays } \\
& \text { how ing } \text { Sale } 1420^{\prime}
\end{aligned}
$$

NOTARIAL CERTIFICATE

OF TRUE CORY

Province of British Columbia :

To Wit:
4
I. William Harold Patterson, a Notary Public in and for the Province of British Columbia, by royal authority duly appointed, residing at 942 West Pender Street, in the City of Vencouver, in the said Province, do certify that the peper writing hereto annexed is a true copy of a document produced and shown to me and purporting to be a report on the Spider Mine by B. W. W. McDougall, B.A., B.Sc., dated December 12th, 1949, the said copy having been compared by me with the said original document, an act whereof being requested, I have granted this certificate under 叫 noteriel form and seal of office to serve and avail as occasion shall or mey require.

Dated this 21st dey of Pebruary, 1950.

A Notery Public in and for the Province of British Columbia.

```
B.W.W. McDougall, B.A., B.Sc.
    Consulting Mining Engineer
    Registered Professiontl Engineer
        Province of British Columbia
Telephones:
    Office, PAcific 1631
    Residence North }161
```

416 Benk of Nove Scotia Building VANCOUVER, B.C.

December 12th, 1949.

The President and Directors,
Sunshine Lardeau Mines Limited,
942 West Pender Street,
Vancouver, B.C.

Deer Sirs:
As per your instructions I have made an inspection of the Spider Mine situated in the Cemborne area of the Lardeau Mining Division, B.C.. Attached hereto please find my report. I trust that this will provide you with the information you require.

```
Yours very truly
B.W.W.McDougall (Sgd)
Consulting Mining Engineer
```


REPORT ON
 THE SPIDER MINE
 VICINITY OF CAMBORNE
 LARDEAU MINING DIVISION
 BRITISE COLUMBIA

416 Benk of Nove Scotia Building,
Vancouver, B.C.,
December 12th, 1949.
B. W. W. McDougall, Consulting Mining Engineer.

INTRODUCTION

This report is based principally on en inspection made on November 12th to 16th, 1949. I was accompanied on the property by Mr. W. J. Scorgie who, in the capacity of Managing Director of Sunshine Lardeau Mines Ltd., has done much worik in rehabilitating the premises and in mining, sorting and shipping a cerload of ore to the smelter for test purposes during the present year.

PROPEETTY

MTNERAL CLATMS:

The Spider Group consists of six mineral claims and fractions winich are listed as follows:

Name of Claim
Anaconda
Gold Bird
Mey Fraction
Spider
Spider No. 1
Winton

Date of Recording
July 25th, 1940
Aug. 1st, 1939
Aug. 1st, 1939
Nov, 3xd, 1931
Nov. 1st, 1931
Dec. 22 nd, 1936

All claims are locations and subject to the performance and recording of annual assessment work to the amount of $\$ 100.00$ each in order that title be maintained in good standing. The territory included by these claims is probably approxdmately that covered by the originsl Spider Group mentioned in the earlier Official reports. Also - the area was, at one time, included in a larger Group then known as the Multiplex.

OTHER PROPERTY:

The Sunshine Lardeau Mines Compazy also holds an option to purchase the old Meridian mill site together with all the buildings situated on it. These buildings are briefly described as follows:

1. Mill Building - except that all mill machinery hes been removed the structure is about as it was when in use by the Meridian Compeny. The wells and roof are sheathed in galvenized iron which circumstence has greatly added in preserving it.
2. Other Buildings - include warehouse, assay office, oil-storage builaing, bunk house and staff house. All have galvanised corrugated iron roofs and except for minor repairs ere in good useble condition.

SITUATION:

The property is situated astride Pool creek about two miles easṭerly from the confluence of this stream with Incomappleux river and the old mining cemp of Camborne. The Spider claim, on which all the mine workings are situated, is on the southerly side of the creek. Camborne is in the river valley some five miles NE from the Village of Beaton which is at the northerly end of the NE arm of the Upper Arrow lake. It is in the Lardeau Mining Division of British Columbia. Maps showing the geography of the dietrict accompany this report.

TOPOCRAPHY:

The Lardeau District is almost entirely within the Selkirk mountain system and, on the whole, it is extremely rugged topographically. It is characterized by deep velleys flanked by lofty ridges whioh culdinate in peaks ranging from 6,000 to 9,000 feet in altitude.

The valley of Incomeppleux river is a NE continuation of the Arrow Lake depression. Pool creek which flows into this velley from the east occupies a steep, narrow ∇-shaped valley. The lower 200 feet, more or less, of the velley slopes are in many places from nearly vertical to well upwards of 45 degrees and the creek flowing through the canyon is tumbling 'white weter' throughout much of its course.

On the Spider claim, which lies imnediately south of Pool oreek the terrain, for the most part, slopes evenly upwards to the south at engles of from about 40 to 45 degrees. There are one or more minor gulches but the generally even nature of the slopes is characteristic. Treils and roeds cen be bulldozed to ell points of known interest in the vicinity of the present workings. The eltitude of the Upper Arrow lake is about 1,390 feet, - at the east rim of the valley near the mouth of Pool creek it is ebout 1,700 feet and on the Spider claim in the vicinity of the mine workings elevations renge from about 3,000 to 3,750 feet above sea level.

ECONOMICS

CLIMATE:

At Beaton precipitation and temperatures are probably similer to those obtaining at Revelstoke where the average annual precipitation is about 42 inches of which about one-third, or 11.8 feet, fells es snow. On the Spider Group some 1,500 feet higher precipitation is probably somewhet similar to that of Ferguson where the average is about 49 inches including the water from about 22 feet of total snowfell. Temperatures are not extreme. In winters sub-zero weather occasionally occurs but, usually such low temperatures prevell for only short periods.

Year-round operations may be carried on provided adequate winter preparations are made. The Meridian mine operating from headquarters st the lower end of the Pool creek trail conducted mining and milling operations during two winters. The road between Beaton and the Meridian mill requires ploughing after storms and at times haulage by tractor-drawn vehicles must be resorted to.

TIMBER:

Much of the Spider Group territory is forested. Trees include fir, hemlock, spruce and cedar. Logging operations are now under wey in Incomappleux valley NE from Cemborne. The valley has been and still is noted for its large stands of cedar suitable for power and communications poles. A saw mill is in operation at Arrowhead.

WATER:

Water under such head as may be required is available for mining and domestic purposes at the mine. The source is a small creek which is said to flow continually throughout the year.

Water for milling purposes, assuming that use will be made of the
conveniently-situated Meridien mill site at the rim of Incomappleux valley, will probably have to be pumped from Pool creek. The creek flows directly past the mill building but, because of the precipitous anyon through which the creek debouches, it will probably be impractical to bring water in to a mill-supply tank under
gravity flow.
POWER:
In the early ' 30 s the Meridian Compeny developed hydro and hydroelectric power on Pool creek. The creek was dammed at a point about one mile up stream from the mill and water was conveyed to a water-driven compressor and a generator in the mill building. Approximately 15 efs of water conveyed through about one-mile of wood-stave and steel pipe under a head of 450 feet developed about 500 horse power. The dem, though still in place and apparently in good condition, is now filled in with stream debris and the flume takeoff is in poor repair. The wood-stave pipe ($50-f 00 t$ head) though still in place has probably seriously deteriorated and the steel pipe has been taken awey. The pelton wheel, end water-driven compressor are still in place and probably in usable condition. This power site is available for the staking. For an operation of 100 tons per dey upwerds the rebuilaing of the power project would werrant careful consideration. However for a smell operation, such as is now contemplated, it will be much cheaper and altogether more satisfactory to use a diesel engine for mill power.

Diesel or gasoline engines will be required at the mine for driving compressors. There is at present a small gasoline powered compressor unit installed at the portel of the No. 5 tunnel. The Compeny also owns a second compressor unit of about the seme capacity.

TRANSPORTATION:

The nearest rail point to this section of the Lerdeau District is Arrowhead which town is the terminus of a Canadian Pacific brench line which follows the Columbia river valley from Revelstoke - a distence of 27 miles. A train operates twice weekly between these points. The C.P.R. S.S. Minto plying the Arrow Lakes between West Robson (Junction point for Trail) and Arrowhead also mekes two round trips weekly. A privately-owned concern maintains a barge service between Arrowhead and Beaton - a distance of 10 miles. On demand heavy carload freight mey be landed in cars by barge at Beaton for unloading empty cars on barges made available at Beaton for outloading ore, concentrates or other materials destined for Trail or elsewhere.

From Beaton a road leads NE up Incomappleux valley to Camborne and the Meridian mill site - a distance of 5 miles. As has elready been mentioned this road is now used by heavy logeing trucks and it cen be kept open during winters by ploughing. Hovever, for a period of perhaps two months it may be necessery to use tractor haulage.

From the Mexidian mill an excellent trail, following the south bank of Pool creek, leads to the Spider mine camp - a distance of about 2 miles. A small-sized crawlex-type tractor can use this trail at the present time though the first mile of the distance is too steep for effective economic transport. The upper mile of trail distance has a somewhat lower average gradient.

In the past all transport between the Meridian mill and the Spider claim has been by pack animals and this is one reason why the property has not been
more fully developed and exploited. The topography of the terrain between mine and mill is such that a tremwey for the full distance between the two points would be difficultend expensive to construct.

It is proposed to instal a cheap jig-back aerial tremwey from a point on or near the trail above the ateeper grades - possibly about one mile down hill from the mine - to the mill. The road ebove this point vould be widened if and where necessary and transport between the mine and the upper tramwey terminal would be by means of a crewler-type tractor and a suiteble trailer. The present transport plan between the mine and the Meridien mill site thus involves the construction of a jig-back tramway perhaps somewhet more than one half mile in length, widening the upper mile of the present trail, installation of ore bins at the tramwy terminals and the acquisition of a suitable tractor and trailer for trensporting ore to the upper terminal and for carrying fuel oil, explosives, groceries and other supplies back to the mine. A careful survey is required to select the cheapest and most satisfactory sites for these trensport links. At the time of my recent visit fog prevented satisfactory inspection. It mey be found desirable to re-route a part of the upper portion of the trall in order to secure a good line for the tramwey.

GENERAL:

Convenient access and transport are elready availeble to within two miles of the property. Operating conditions, generelly, are similar to those pertaining to many mining properties in the Lardeau and Kootenay districts.

HISTORY

The Spider claim and certain contiguous territory was first staked about 1909. Development by hand-mining operations, presumably by the original owners, was carried forward until about 1914 and a small ore shipment is reported as having been made in 1912. In 1914 the original Spider locations were acquired by the Multiplex Mining and Milling Coapany and a number of additional claims were staked or otherwise acquired. Intermittent small-scele operations were carried on for a number of years and several small ore shipments were made. The Company was, however, inadequately financed and comparatively little useful and systematic development was accomplished.

The two central claims of the original Spider Group were restaked in 1931 and four others were staked in 1936, 1939 and 1940. Control of the resulting 6-claim Group was acquired by the Sunshine Lerdeau Mining Company in 1949

RETPERENCES

Brief descriptions of the Spider and Multiplex operetions are given in the Annual Reports of the Minister of Mines, B.C., for the years 1909 to 1936.

The general and geological features of the Lardeau District are given in Memoir 161 of the Canadian Geological Survey by Drs. J. F. Walker, M. F. Bencroft and H. C. Gunning. In this excellent publication the Multiplex (Spider) Group is described on pages 85-88. Speciel attention is called to C.G.S. Map No. 235 A of The LARDEAU AREA which accompenies this Report.

> B. W. W. McD. (Init.)

Reference is made of C.G.S. Memoir 161 for detailed descriptions of the Lerdeau District.

The Lardeau area is that section of territory extending NW from the north end of Kooteney Leke to within a few miles of the Illicillewaet river and the main line of the Canadian Pacific railwey. It is about 70 miles in length and from, roughly, 15 to upwards of 20 miles in width. Being in the heart of the Selkixk mountains it is exceedingly rugged topographically; eltitudes range from about 1,390 feet at the Arrow leke to upwards of 8,000 feet at the higher peeks.

The rocks underlying the central portion of this belf consist of schists, quartzites, phyllites, slates and limestones of later Premambrian age and are known as the Lardeau Series. This series is bordered by two slightly older formations - one known as the Badshot Limestone snd the other as the Hamill Series. The whole of this late Pre-Cembilian is partly bordered by intrusive rocks - mainly granodiorites - of the Nelson and Kuskenax batholiths of Jura-Cretaceous age. Structurally these rock formations form a great syncline a striking feature of which, as shown in C.G.S. Map 235 A , is the persistence of the Bedshot limestone belt on both margins of the later Lardeau Series formations. As is characteristic in large structures of this character, these are inn merable minor folds, overturned folds and other deformations. Dips are characteristically steep and shearings are, for the most part, parallel to the long axis of the syncline. Ore mineralization is presumed to be related to the Jura-Cretaceous intrusives which partly border and probably underile the metamorphosed Pre-Cambrian sediments and volcenics.

LOCAL:

The Spider property is situated nearly midway between the SW and NE borders of the Lardeau Series. The rocks exposed in the mine workings are mainly phyllites and chlorite schists with minor beds of argillites. The varying rock types are conformable in strike and dip - the strike being about NW - SE and the dips from 70 to 80 degreees NE. Some shearing has probably occurred parallel to the planes of schistosity.

Traversing the Spider claim in a genersl NW - SE direction in the vicinity of the mine worlings - and perhaps extending to Pool creek on the NW and considerably farther up the mountain to the SE - is a belt of chlorite schist which has been so completely altered by metemorphism that its original character is obscure. The rocks are greenish in color and resemble greenstones. It is thought that this rock type mey have originally been an intrusive endesitic sill. Besides having welldefined beding plane structure - conforming to the general attitude of the Lardeau Series in the vicinity - this rock member has two series of well-developed joint planes. One set strikes about NE-SW and dips steeply to the NW and the other strikes about $\mathrm{N} 10^{\circ} \mathrm{W}$ and dips about 800 E . These joint and bedding plane fractures were the che-nnels through which mineralizing solutions penetrated and in which sulphide mineral-ization occurred. The ohlorite schists are altered to carbonates in irregular patches across a belt roughly 50 feet in width and of unknown length. The resulting rocks are grey in color in the immediate vicinity of the ore occurrences and this distinct carbonation color gradually deepens to the general shade of the original chlorite schista as distance from the ore occurrences is gained. Ore ocours over short lengths where two sets of joint planes cross and, to a lesser extent, slong the flat-lying seams. The process of rock
alteration by carbonation, development of chrome mica and deposition of sulphide minerals by replacement are all stages of the sane mineralization process. Ore mintrals include gelene, blends and pyrite with minor amounts of grey copper. Due to the high silver content of this latter mineral it is suspectea that the grey copper approaches stephanite in composition. There are minor amounts of other sulphides and, also, a small gold content. It is not known with which minerel the gold is principally associated. The sulphides, though occurring in sizable masses, are so intimately mixed that effective hand-sorting is quite impossible and it probably due to this fact that eerlier operators found it impossible to sort out a satisfactory shipping product. The mine workings are limited to extent and disclose no.well-defined pattern for the ore occurrences except that these occur largely in the N-S joint-plane zones.

It might be noted that the ore and vein occurrences on the Spider claim differ strikingly from those which are found innediately on the North side of Pool creek some little distance awey. Here the veins are relatively large, carry heavy pyrite content and consistent, though relatively low, values in gold.

MINE VOKKINGS.

The altered or carbonated zone is partly explored over a length of about 750 feet and through on altitude range of more then 700 feet. The mine is opened by seven adits of which only the upper two are connected by upraise. There is little that cen be seen of surface outcrops. In the following descriptions each adit level will be dealt with separately. Elevations indicated are as determined by aneroid readings which differ somewhat from figures given by other engineers. In any event the numbers of the severel adits and levels are sufficient for identification.

NO. 7 LEVEL: Elev. 3,050'

This level is now caved at the portal. It was driven to intersect the projected position of an orebody located on the No. 6 level above. It is said that this adit crosscutted the projected position without encountering ore. Also, that though the working penetrated partly cerbonated chlorite schist it has not disclosed the dense gray carbonates in which the orebodies characteristicelly occur. Well carbonated rocks in the vicinity of the outcrop at the No. 6 tunnel horizon and an apparent fault which displaces the ore in the No. 6 tunnel suggest that exploration on the No. 7 horizon is far from complete. In any event only one vein has been searched for - the others lie some hundreds of feet to the south of the No. 7 level face. Workings on this level aggregate about 320 feet.

NO. 6 LEVEL: ELeV. $3,112^{\prime}$

An adit about 48 feet in length intersects a joint-plane vein at very shallow depth. This vein strikes $\mathrm{N} 12^{\circ} \mathrm{W}$ and dips about $76^{\circ} \mathrm{E}$. Ore ocours over a length of ebout 25 feet. To the NW the vein is but a few feet below the surface and to the SE it is dislocated by a minor fault. Crosscutting on the inside of this feult is said to heve revealed ore in the drill holes of the last round drilled. Due to ore sorting operations which were under wey at the time the round wes not blasted and the solving of this fault to prove the further continuance of the orebody to the SE cannot be confirmed. A winze was sunk on ore to a depth of 12 feet. Widths of 5 feet and more of excellent ore are disclosed at the collar. Semple No. 1 taken across a pillar near the fault, aeross a width of $18^{\prime \prime}$ asseyed, - Au $0.20 \mathrm{oz} / \mathrm{t}$, Ag $16.50 \mathrm{oz} / \mathrm{t}, \mathrm{Pb} 9.80 \%$, $\mathrm{Zn} 7.5 \%$.

One taken from a raise about 8 feet above the drift back, across a widh of $40^{\prime \prime}$ assayed, - (Semple No. 2), Au $0.11 \mathrm{oz} / \mathrm{t}$, Ag $30.30 \mathrm{oz} / \mathrm{t}, \mathrm{Pb} 26,30 \%$, $\mathrm{Zn} 10.70 \%$. It is to be noted that this vein is entirely different from those which are opened in the higher levels. The total length of workings on this level is about 1.25 feet.

NO. 5 LEVEL, EleV. 3,502'

This level is the closest to the mine cainps. The tumnel, together with spur workings from it, aggregates more than 500 feet of work. Most of this has been effected entirely outside of the carbonated zone. Lightly carbonated rocks were observed over a short length and ore minerals occur at one point but were not drifted out. These workings are in excellent physical condition and probably afford the quickest and cheapest access for immediate underground exploration. The projected position of the downwerd extension of orebodies which are opened on the level inmediately above is still some distance SE from the face of the workings,

NO. 4 LEVEL, TLeV. 3,467

Workings on this level aggregate more than 500 feet. A crosscut adit intersects a joint-plane vein which strikes about N $12^{\circ} \mathrm{W}$ and dips 75° to $80^{\circ} \mathrm{E}$. A second more or less parallel vein is also opened on this level. Raises and small stopes have been excavated in both veins and smell shipments of handsorted ore have been made. The ore shoot lengths appear, in each case, from about 30 to 35 feet. Operators were obviously principally interested in locating and openings ore occurrences which could be exploited by hand-sorting methods. Ore remaining in the stope backs is of excellent grade. A winze has been sunk to a depth of 48 feet at the intersection of the adit with the first vein. This working is not readily accessible, - it is said to be in good ore throughout and the ore widths, in places, exceeds 5 feet. Two semples, one from each of the two stope backs, esskyed as follows:

$$
\begin{aligned}
& \text { No. } 3 \text { Width } 36^{\mathrm{n}} \text {, - Au } 0.06 \mathrm{oz} / \mathrm{t} \text {, Ag } 30.80 \mathrm{oz} / \mathrm{t} \text {, Pb } 16.8 \% \text {, } \mathrm{Zn} 21.3 \% \\
& \text { No. } 4 \text { " } 40^{\prime \prime} \text {, - " } 0.11 \text { " " } 58.70 \text { " " } 16.80 \% \text { " 16.1\% }
\end{aligned}
$$

These samples were taken across obvious ore backs in order to obtain a reasonable approximation of ore velues in orebody structures.

NO. 3 LEVEL, Elev. $3,696^{\prime}$

This is a grass roots tunnel which followed a narrow joint-plane occurrence for some little distance. The sulphides exposed, though narrow, appear to be of similar grede to those occurring elsewhere. A short raise was driven through to the surface and evidently the ore was stripped for shipping. This ore occurrence may be related to the first vein encountered in the No. 4 tunnel below. Workings aggregate about 120 feet.

NO. 2 LEVEL, H1ev, 3,706*
This tunnel encounters a vein at about the 40 -foot point and a drift follows it for a distance of about 80 feet. The vein strike is about $\mathbb{N} 10^{\circ} \mathrm{W}$ and the dip is steeply to the east. It mey be related to one of the veins opened in the No, 4 tunnel but this is not yet proven. The vein has been stoped through to the No, 1 tunnel ebove over a maximum length of about 60 feet. The vein exposed in this stope back though nerrow carries high grey copper content and assays high in silver. Sample No, 5 taken across a 15 -inch width of stope back essayed, - Au 0.14 $\mathrm{oz} / \mathrm{t}, \mathrm{Ag} 171.55 \mathrm{oz} / \mathrm{t}, \mathrm{Pb} 27.3 \%$, $\mathrm{Zn} 6.0 \%$. Sample No. 6 was taken across a $30-1$ nch wiath from the bottom of a stope pillar,- it assayed, - Au $0.06 \mathrm{oz} / \mathrm{t}, \mathrm{Ag} 32.2 \mathrm{oz} / \mathrm{t}$, $\mathrm{Pb} 10.8 \%, \mathrm{zn} 7.7 \%$. Workings on this level, exclusive of stoping, aggregate about 120 feet.

NO. 1 LEVEL, E1ev. 3,741"
This tunnel intersected the vein at the 32-foot point. The orebody having been stoped upwards to the level from below and above the level towards the surface, is largely inaccessible. The ore which was extracted carried considerable grey copper and, obviously, must have asseyed high in silver.

Mine workings on these seven levels aggregate a little more than 2,000 feet and with the exception of the No. 1 level and the caved portel of No. 7 level all workings are in good condition. Little timber is required except for chutes and in stoping. The ground stends well and the veins dip steeply which circumstances are of decided importance in respect to mining costs.

CONCERINING ORE

Altogether at least three and perhaps four entirely separate veins appear to have been disclosed and it is reasonably possible that others occur in the imnediate or near vicinity of the present workings which have not yet been discovered.

Ore widths vary from a few inches to upwards of five feet. Since all orebodies which have been found have, to a large extent, been stoped it is impossible to determine a reasonably precise average vidth. Also- in certain sections narrow bands of ore follow more or less flat-lying joint planes awey from the main bodies of the shoots to gradually fade out some feet distant. The vein material cannot readily be 'stripped' and the blocky nature of the well rocks is certain to result in some considerable degree of dilution with consequent lowering of the grade of broken ore. In the event that a production operation should be established the matter of installing a waste-picking belt shead of the crusher is likely to warrant serious consideration. Such ore shoots as have already been discovered are short and the exploration work which has been done does not reveal axy pattern from which estimates concerning the frequency in which other shoots mey reasonably be anticipated, cen be based.

Likewise, even with a complete sampling of present stope backs and pillars, it would be difficult to determine a precise everage grede for the ores which remain in the partly-worked orebodies now exposed. The six check samples which I took were all from more or less typicel ore exposures in ore shoot areas. Disregarding sample No. 3005 which was taken from the back of a stope on a narrow vein carrying high grey eopper content and which assayed $171.55 \mathrm{oz} / \mathrm{t}$ in silver, a rough numerical average gives approximately the following metal values, Au $0.10 \mathrm{oz} / \mathrm{t}$, $\mathrm{Ag} 33.0 \mathrm{oz} / \mathrm{t}$, $\mathrm{Pb} 16.0 \%$, $\mathrm{Zn} 12.0 \%$. Assuming weste-picking ahead of the ball mill feed to remove most of the over-break dilution, an empirical orevalue figure is suggested as follows: A u $0.10 \mathrm{oz} / \mathrm{t}, \mathrm{Ag} 25.0 \mathrm{oz} / \mathrm{t}, \mathrm{Pb} 10.0 \%$, Zn $6,0 \%$, Assuming overall mill recoveries of 90%, and at present metal prices, such a grade of ore is valued at approximately $\$ 45.00$ per ton on the basis of smelter-pay figures.

There is a relatively small tonnage of ore remeining in stope backs and pillars. The 48 -foot winze below the No. 4 level is seid to be entirely in ore of good width and velues. The No. 5 level has not been driven far enough to explore the downward projection of this shoot but this objective is considered as a promising one for the occurrence of important possible tonnage. The short winze below the No. 6 level suggests the probability that additionsl ore occurs below
this level on an entirely different vein from those developed on and above the No. 4 level. Though the No. 7 level did not oncounter ore it is not at all certain that exploration is exhaustive. There are no maps and without these it is impossible to direct underground work properly. A considerable emount of ore is scattered over the seversl dumps. Most of this cen be recovered by the use of a small bulldozer aided by a simple drag-line device.

An estimate of the ore proven and inferred by present workings, made by another engineer, is as follows:

Proven ore, $\quad 3,600$ tons
'Indicated' ore 3,200 tons
Total 6,800 tons
I have carefully examined the details of this estimate and it is evident that the computation was carefully compiled.

The merit of this mine lies in its undeveloped possibilities rather than in the present-known and pertly worked out orebodies. I think it is reasonably certain that carefully directed exploration and development will reveal not only depth extensions of known ore shoots but others at present wholly unknown. The nature of these deposits, however, indicates that the property is likely to be one capable of supporting relatively smell-scele production of relatively high grade ore.

Numbers of smell shipments of hand-sorted ore have been made from the Spider mine in past years. I do not know, however, of any complete record of these shipments. During 1949 Mr. W. J. Serogie, Menaging Director for Sunshine Lardeau Mines Lted., made a trial shipment of hand-sorted ore from the several ore exposures in the mine. In preparing this shipment it was found quite impossible to sort out clean galena from the mixed sulphide masses. Gelena, being the most friable of the three principal sulphides present, shatters more readily then do the other two. Details of the shipment are as follows:

Date of Shipment, Dry Weight of Shipment Assays,-

Gold	$0.12 \mathrm{oz} / \mathrm{t}$
Silver	$36.20 \mathrm{oz} / \mathrm{t}$
Lead	18.9%
Zinc	13.5%
Iron	19.3%

Gross velue
 Freight \& Treatment Chgs. Net Value

October 7th, 1949, 26.028 tons,

Shipment was made to the lead plent at Trail and only about onequarter of the zinc was paid for. The iron content from pyrite which could not be sorted resulted in a penalty of $\$ 4.25$ per ton. Thus the zinc value loss and the iron penalty resulted in a 'loss' of about $\$ 8.00$ per ton compared with what would have resulted had separate lead and zinc concentrates been shipped.

The experience derived from making this shipment very cleerly indieates that this ore must be milled to make two shipping products in order to make the most from the pay metals contained in the ore.

CONCERNING MIILING

The Sunshine Lardeau Company has decided to provide milling facilities and arrange for transporting ore to the mill by aerisl tremway and motor haulage as early in 1950 as weather conditions permit. To this end it has acquired an option to purchase the old Meridian mill buildings. Besides the mill building the structures include a warehouse, asssy office, oil house, bunk house and staff house. All these buildings ere in good usable condition. It is planned to instal a processing unit having a capacity of 30 tons daily in the mill building, Dieselpower will be used and the plant will be designed to make both lead and zinc concentrates. A general ore semple has been sent to Denver for the purpose of obtaining flow-sheet details.

It might be mentioned here that the cost of operating a 30 -ton unit three shifts daily would be about 25% more than that resulting from operating a 50 -ton unit two shifts daily. The larger unit, of course, also provides more elesticity in that a larger tonnage can be treated by operating it on a three-shift basis. The difference in cost of the two units is considerable and until larger ore resources may be opened the Company is adverse to making the larger capital expenditures. The Company has been influenced in making its decision to instal the mill and ore-transport facilities largely for the following reasons:

1. It considers that there is already sufficient ore available and indicated in the mine and on the dumps to largely offset the costs of the mill and the ore-transport devices. In any event the further development of the mine would require capital expenditure for trensport facilities whether a mill was in operation or not.
2. If important mining work were done prior to the commencement of milling much of the ore now available on the dumps would become excessively diluted with waste and, eccordingly, be lost. Also new ore that mey be encountered in underground development cannot be safely stock-piled on the steep mountain side without serious loss.
3. The Company believes that the possibilities of locating new orebodies are, of themselves, sufficiently good to warrent immediate milling preparations. This reason is, of course, an opinion but one supported by fevorable facts so far as these can be known.

MINE BUILDINGS AND PACILITIES

The mine camp buildings consist of two closely-spaced log buildings. They are in good condition and lerge enough to accomodate a crew of about 12 men . In order to carry on a mine developement progremme employing two drills on a twoshift basis a crew of ebout 15 men will be required. It will be necessary to provide another building.

A one-drill compressor powered by a gasoline-driven engine is now installed at the portal of the No. 5 tunnel. The Company also owns a second unit of about the seme capacity. This second compressor would probably be installed at either the No. 6 or No. 7 tunnels.

GENERAL RECOMMENDATIONS

It is difficult to set forth precise detalled recommendations at this tine since these will depend on equipment items that mey be decided on and on other factors which sre not firmly established at present. The recomendations, generally, are based on the Company's decision to commence production operations
B. W. W. MCD. (Init.)
from the ore now available by constructing a mill as carly as possible. This, of course, necessitates a mine exploration and development programe for the purpose of opening additional ore at the same time. It is assumed that arrangements for the purchase of suitable mill and power equipment will be made during the present winter and, in general, that arrangenents for getting construction and mining operations under wey as early in the coming year as possible will be planned in detail.

1. Decide after careful crulsing and surveying on the deteils of mine to mill transport. As mentioned earlier in this report, the method of transport is most likely to be a combination of motor haulage and eerial tremwey. Trail widening, rebuilding of small bridges across several small gulches, such re-routing of road as mey be required and the instellation of the aerial treawey should be commenced as early as the season permits. The majoritems of transport equipment are a small crawler-type tractor with a suitable trailer designed to carry a load of five tons or more and aerial tremwey equipment and materials. In respect to the latter items - much of this equipment is available near the site.
2. Installation of the milling and mill power equipnent can and should be commenced and carried to completion at the same time as the transport facilities are being provided.
3. At the mine the second compressor should be installed and made ready for operation and comp facilities for a orew of about 15 men put in readiness.
4. The mine should be surveyed and accurately mapped and from the information thus provided a mining programme should be properly planned. In a general way it is believed that exploration and development may best be conducted by extending the No, 4 and No. 6 adits SE following, as elosely as possible, the carbonated zone and by extending short-range diemond drill holes to the NE end SW limits of this zone at regulerly spaced intervals. This work mey possibly be materially essisted by using simple geophysical methods. The search for new orebodies can obviously be most economically effected by this method since over the course of even a year's time hundreds of feet of futile crosscutting would be avoided.

CONCLUSION

Exploration and development slready affected at the Spider mine has demonstrated that at least three separate ore-bearing veins occur within an area roughly 1,000 feet long by 50 feet wide. The altitude range of these veins is about 700 feet. Within this area exploration is still incomplete and other veins may exist which have not yet been discovered. Also - none of the known ore occurrences, so far as is now recognized, heve been opened to their depth limits. The totel length of strike over which the carbonation process has been operative has not been determined but it obviously extends to the NW and SE of the present mine workings.

Ore shoots are short and are almost certain to be erratic in their mode of occurrence though this feature is, to some extent, compensated for by the relatively high grede character of the ore. Limited exploration openings and lack of pattern in respect to the known veins prevent soundly-based predicytions as to the probable limits of this ore-bearing belt or of the frequency with which shoots may be expected to occur within its limits.

> B. W. W. MoD. (Init.)

It is estimated that, within the limits of present mine workings, there is reasonably assured and possible ore amounting to several thousand tons which can be mined and milled at a profit and, I believe, the prospects for discovering more ore shoots are good. Obviously the lift of this operation depends on the fortunes of further underground development.

Respectfully Submitted
B. W. W. MeDougell (Sgd)

Consulting Mining Ingineer

416 Bank of Nove Scotia Builaing,
Vencouver, B.C.,
December 12th, 1949.

CERTIFICATE OF ASSAY

\# $790018 / 023$.
Sunshine Larãeau Mine

J. R. WILIIAMS \& SON

Provincial Assayers and Chemists
Office and Laboratory:
580 Nelson Street, Vancouver, B. C.

I hereby certify that the following are the results of asseys made by me upon samples of oRE herein described and received from Mr. B. W. W. McDougall, M.E.

November 21st, 1949.

Gold celculated at $\$$ \qquad per ounce Silver calculated at \qquad cents per ounce

Celculated at \qquad cents per lb. Calculated at \qquad cents per lb.

NOTE - Pulps of Semples retained 2 months from date of Receipt. Rejects l week unless otherwise instructed.

$$
\frac{\text { R. N. Williams Provincial Asseyer }}{(\mathrm{Sgd})}
$$

1538 Edmonds Street,

New Westminster, B.C.

August 27, 1948.

```
Directors,
Sunshine Larceeu Mines Limited,
942 West Pender Street,
Vancouver, B.C.
```

Dear Sirs:

In eccordence with your instructions I have made an examination of the Blsmere Group of Mining Properties, situated in the Trout Lake Mining Division of British Columbia. Attached hereto please ind my report. I trust that this will provide you with the information you require.

Yours very truly,

W. J. Scorgie.

REPORT

Blspere Group, Trout Leke, B.0.

Property The property, cosaiating of six claime, 316 sores in ell, is loceted about 10 miles from the town of Ferguson, near the heed of Ferguson Creek on the north fork of the Lardeau Liver, in the Trout Leke Mining Division, B.C.

Mistory This group of claime wes originslly loceted by Hillmen, Kennedy and Prazer. In 1916 the property was sold to American interests for $\$ 45,000$, who formed the Circle City Mines Ltc. Under this manegement the property was partially developed by open cuts, winzes, end three tunnels, and setisfactory results were obtained. At the end of the seeson's work in 1918, it was the corapany's intention to press developinent woris with the view of proving up sufficient ore for the erection of a concentrator. However, the war's end brought on a slump in aetel prices, dried up development funds, and the company wes forced to suspend its operetions, eventueliy to drop the property when conditions did not improve. No further poxi wes done up to the preaont time. This property wec fevorably reported on by the Minister of Minse in the Annuel Reports for the years 1917 and 192e.

虹tle Ownership of the property is vested with the Crown, end held under right of lecation by Jeines Lialn, Evelyn Deney, end Seldon Deney, Jr., ell of Ferguson, B.c.

Topogrepiy and Cenersl Conditions. The mine is situated at elevations ranging from 5800 to $\$ 700$ feet on the douth alope of alvide which eperetes the Irout Lake Mining Division from the Aineworth Mining Division, and the claims trend in a north-westerly direction from Ferguson Creak. The axes is not exceasively rugged, the overburden is light, end there are feir stends of timber, sufficient for mining purioses. A good cemp site exists with an sbundent supply of water for sil needs. The buileings put up during the first operations are now broken down.

From the present workings there ie a good treil to Cirele City, a distance of 2$\}$ niles. Thia trail ban be eesily wicened into a good road by meens of a bulldozer. The remaindes of the diatazce from Clrole City to Ferguson, 7 miles, neede only to be cleared out, this portion kevicg once beer, surveyed by the C.P.R. for e proposed railway grade.

With proper preparations, work on thia property can bo cexried on the yeer round.

Charbcter of Ores. The ores are mediun to fine-grained sulphides of gelena earcyiug gilvor values in varying quantities, low percentagea in rinc, end undetermined velues in copper.

Qeolom ane Ore Occurrences. The mine is situated in what is known as the Lime Drke Belt, a recionel feeture that la from 100 to 200 feet wide, and ten to fifteen milles long, striking in e north-westerly direction; the dip is about 70° to the north-eest. The ore occure as a replacement in the hanging woll of the limestone elong the contact of a ereen chlorite schist. There is some indicetion thet ore elso occurs in pert as a true fissure vein, and, to a lesser extent, in the oblorite schist. Geologiceliy, this aree is considered to be on outlier of the Pre-Cembrien Age.

At the time of ny first viait to the property on the 29 th and 20 th of July, I traced the outcropping of ore for a length of 1250 feet, which showed widths of from 2 to 12 feet. At the lest observable exposure the minerelized
zone is strong and well-defined, having a greater width then elaewinere, being about 12 feet wide at this point.

Farther slong the profected strike, and on the down-hill side of it, I noted spsciraens of high-grade floet, some being several hundred pounds in weight bnd composed of elmost solid gelone. Presumebly these origineted from the alineralized zome sbove. I aid not teke any samples or asseys of this filoat as any such information et this time could only be misleading. The minerelized zone does not appesr to be heavily covered; therefore I suggest thet extemsive trenching be carried out et short intervels along the projected strike with a vies to picking up the sourue of this high-grade flost.

Underground Develoynent. The only development work done is on the lower or soutbera end of the property. In ell, three tumels have been dxiven, which sare still in good shepe, elthough some aceling will be required to put these old workings into a sefe condition.

The upper tumel, et an elevation of 6200 feet, is driven in for a length of 50 feet slone the limestone contect. The walls are well defined and comerclel ore is exposed for a width of froin a to 5 foet, with elmost 3 feet showing at the facs. The main tumnel, 350 feet below the upper tunnel, is driven in for a length of 320 feet. Thas tunnel wes storted diagonally in the limestone ad erosscut, the objective being to intersect the schistlimestone contect. However, 40 feet from the portel, ore was encountered in the limestone, and the remainder of the distance to the present face was driven in this ore, the objective still being short of $50-60$ feet. The width of this ore occurrence is not known as no crosscuta were made, elthough both walls are in ore. A composite somple taken by me in this tumel geve these velues: gold . $0050 \mathrm{oz} / \mathrm{t}$, silver $1,3 \mathrm{oz} / \mathrm{t}$, lead 47%

The workings just described ere on \#l Elsnele Cleim. On the adjoining clam to the norti, a chort croascut tunnel, about 18 feet long, intersects the contact zone. At this point, e winze, of reet deep, was sunk which exposed highly mineralized vein materiel 2 teat wide, which asseyed: gold . $005 \mathrm{oz} / \mathrm{t}$ silver $50.2 \mathrm{oz} / \mathrm{t}$, lead 78.8%. Between this point sad the upper tunnel on H1 clain, the following samples were taken in the open suts: 110 feet south of above, a is foot chennel semple geve: gold, trece; silver l. $2 \mathrm{oz} / \mathrm{t}$, leed 11.9%; the mext genple 100 feet south gave over 2 feet: gold, trace; silver $1.0 \mathrm{oz} / \mathrm{t}$; lead 25.6%; twenty feet ferther south a 2 ft . channel showed; gold . $005 \mathrm{oz} / \mathrm{f}$; allver $0.8 \mathrm{oz} / \mathrm{t}$, lead 17.2%; forty feet south \& 4 ft , chemel give: gold $.005 \mathrm{oz} / \mathrm{t}$; silver $1.1 \mathrm{ok} / \mathrm{t}$, lead 26.1%; and the finel bemple teken above the upper tumel of fl elaliil over a 3 ft. width esssyed: gold . $005 \mathrm{oz} / \mathrm{t}$; silver $66.9 \mathrm{oz} / \mathrm{t}$; lesd 61.2%

Conclusion: The Elsmere group of chaina lie slong the atrixe of the Lime Dyise Belt for a length of six claims, or 9000 feet. For 1250 feet of this distence, pronising exposures of ore heve boen traced with excellent indieations for pieking up rioxe ore along the strike. Where expoaed, ore widtha vary from 2 to 12 feet, but no average widh cen be given at this stage.

It must be borne in mind that these early operations were primarily in search of high-grade silver deposits; therefore little attention was given to galena ores that were low in silver values. This certainly must have been the case when the lover tunnel was driven. This tunnel was started in the limestone es a diagonal crosscut, the objective being to reach the schistlimestone contact where silver values were believed to exist. When forty feet in from the portal, the tunnel entered ore of a replacement character and continued in this ore for 280 feet to the present face, short of its objective by possibly 50 or 60 feet. Although a composite seinple taken by may self of the face end walls shows lead values of 47%, no attempt had been mede to define by means of crosscuts the extent of this apparently large lead-bearing body.

Hf examination of these woricings leads me to believe that properlyconducted exploration should result in the development of good grade lead ore. This cen best be begun by continuing the present tunnel to end along the contact, with side crosscuts into the limestone to determine the extent of the replacement. Further work would depend on the results obtained.

In view of the promising surface indications observed on the northerly end of the traced zone, I feel that this ares should receive intensive exploration and development. This work can be carried out economically and would bring quick results.

In conclusion, this preliminary examination indicates that the principal values ere in lead, with leaser amounts of silver, end then, at the present high price for lead, this property merits considerable development.

Respectfully submitted.

August 27, 1948.

