001280 DATED: NOVEMBER 5, 1992

This Prospectus constitutes a public offering of these securities only in those jurisdictions where they may be lawfully offered for sale and therein only by persons permitted to sell such securities. No securities commission or similar authority in Canada has in any way passed upon the merits of the securities offered hereunder and any representation to the contrary is an offence.

RANDSBURG GOLD CORPORATION

Suite 1300, Park Place 666 Burrard Street Vancouver, British Columbia V6C 3J8

(the "Issuer")

NEW ISSUE: 1,000,000 Common Shares

PRICE: \$0.35 per Common Share

Geological Survey Branch

	Price to	Agent's	Net Proceeds to be
	Public (1)	Commission (2)	received by the Issuer
er Share	\$ 0.35	\$ 0.05	\$ 0.30
otal	\$350,000	\$50,000	\$300,000

(1) The price of the Offering has been determined by the Issuer in negotiation with the Agent.

Before deduction of expenses of this Offering estimated not to exceed \$25,000.00. (2)

The Vancouver Stock Exchange has conditionally listed the securities being offered pursuant to this Prospectus. Listing is subject to the Issuer fulfilling the listing requirements of the Exchange on or before May 7, 1993, including prescribed distribution and financial requirements.

There is no market through which these securities may be sold.

A purchase of the Securities offered by this Prospectus must be considered as speculation. The properties in which the Issuer has an interest are in the exploration and development stage only and are without a known body of commercial ore. Refer to "Risk Factors" for further details.

One or more directors of the Issuer may, from time to time, have an interest, direct or indirect, in other natural resource companies. Refer to "Conflicts of Interest" for details of the proposed conflict resolution mechanism.

No person is authorized by the Issuer to give any information or to make any representation other than those contained in this Prospectus in connection with the issue and sale of the securities offered.

Upon completion of this Offering, this issue will represent 36.69% of the shares then outstanding as compared to 28.58% that will then be owned by the controlling persons, promoters, directors and officers of the Issuer and associates of the Agent. Refer to "Principal Holders of Securities" for details of shares held by directors, promoters and controlling persons and underwriters.

The Offering Price of \$0.35 per share exceeds the net tangible book value per share by \$0.18 after giving effect to this Offering, representing a dilution of 63.48%. Refer to "Risk Factors" for further details.

The Agent has agreed to purchase (the "Guarantee") any of the shares offered hereby for which subscriptions have not been received at the conclusion of the Offering, and as consideration for the Guarantee has been granted Agent's Warrants.

The Agent's Warrants have been distributed to the Agent under this Prospectus. Any shares acquired by the Agent under the Guarantee will also be distributed under this Prospectus through the facilities of the Vancouver Stock Exchange at the market price at the time of sale.

We, as the Agent, conditionally offer these shares subject to prior sale, if, as and when issued by the Issuer and accepted by us, in accordance with the conditions contained in the Agency Agreement referred to under "Plan of Distribution".

Name and Address of Agent

PACIFIC INTERNATIONAL SECURITIES INCMINISTRY OF ENERGY, WHITE S. & PETROLEUM RESOURCES.

Suite 1500 - 700 West Georgia Street Vancouver, British Columbia V7Y 1G1

REC'D NOV 2 7 1992

EFFECTIVE DATE: NOVEMBER 9, 1992

NELSON, B.C.

SUMMARY OF PROSPECTUS

This summary is not in itself complete and is qualified by the more detailed information appearing elsewhere in this Prospectus. Reference is made to the body of this Prospectus for the complete text of this first public offering of Randsburg Gold Corporation (the "Issuer"):

THE ISSUER

्रमात्रकी प्रवेशकारी विशेष्ट्रकारिकार

2011/18

The Issuer was incorporated pursuant to the laws of British Columbia on July 6, 1990. The Issuer is engaged in the business of acquiring, exploring and developing natural resource properties.

THE OFFERING

1,000,000 common shares at the price of \$0.35 per share through the facilities of the Vancouver Stock Exchange. Refer to "Plan of Distribution" for further details.

PROCEEDS TO THE ISSUER

\$300,000.00

THE PROPERTIES

The Issuer has an option to acquire a 100% interest in two (2) separate but contiguous groups of claims located in the Greenwood Mining Division of the Province of British Columbia. The claims will hereinafter be referred to as the "Wild Rose" claims which consist of four (4) reverted crown grant two post (non metric) claims, two (2) two post (non metric) claims and two (2) metric modified grid claims and the "Bombini" claims which consist of nine (9) two post mineral claims (together the "Properties"). The Properties are located approximately 4.5 kilometers southwest of the town of Greenwood, British Columbia and cover approximately 700 acres.

USE OF PROCEEDS

To complete a work program recommended on the Properties, at an estimated cost of \$110,000 in accordance with the recommendations received from the Issuer's consulting engineer.

DILUTION OF INVESTMENT

The issue price to the public exceeds the net tangible book value per common share calculated as at July 31, 1992 after giving effect to the Offering, by \$0.18 or 63.48%.

MANAGEMENT

Jeffrey Joseph

Ciachurski - chief executive officer,

president and a director

Robert James

Twitchell - chief financial officer,

secretary and a director

Richard Douglas

Hunter - director

Henry Herbert

Shear - director

REPORT ON

on the

WILD ROSE GOLD PROPERTY

GREENWOOD MINING DIVISION, B.C.

N.T.S. 82 E/2 Latitude 49⁰ 04' 30" N Longitude 118⁰ 43' 30" W

for

RANDSBURG GOLD CORPORATION.

113 West Kings Road,
North Vancouver, B.C. V7N 2L7
Tel: (604)980-8183

by

ALEX BURTON, P. Eng. BURTON CONSULTING INC., 5900 No. 1 Road, Richmond, B.C. Tel: (604) 244-8413

ORIGINAL Report November 19, 1991

Amended Report June 30, 1992

Amended August 20, 1992

FILE:R7-RAN-1.DOC

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	1
2.0	INTRODUCTION	4
3.0	LOCATION AND ACCESS	6
4.0	CLAIMS	7
5.0	PROPERTY HISTORY AND PREVIOUS WORK	13
6.0	GEOLOGY	14
	6.10 Exploration Potential	15
	6.20 Geology of the Veins	17
7.0	SUMMARY of MINERALIZATION	22
	7.10 Probable Category Mineralization	
	7.20 Possible Category Mineralization	
	7.30 Unknown Grade Mineralization	
	7.40 Total Tonnage and Grade	
8.0	STATEMENT OF COSTS	24
9.0	CONCLUSIONS	25
10.0	BUDGET	25
11.0	CERTIFICATE - ALEX BURTON, P. Eng	26
12.0	REFERENCES	27
13.0	APPENDIX	
	Assay Certificates A 9114402, A 9115756,	
	A 9119593-(1A&1B),	
	A 9120138, A 9120464	
	1V-1398-RA1, 1V-1398-RD1	
	·	

Diamond Drill Hole Logs 91-1 to 91-8

MAPS

	•	PAGE
Figure 1	Location Map	3
Figure 2	Claim Map	5
Figure 3A	Legend for Fig. 3A	8
Figure 3A	Geology (after Church)	10
Figure 3B	Legend for Fig. 3B	11
Figure 3B	Geology (after Little)	12
Figure 4	Vertical Cross Section	18
Figure 5	Vertical Longitudinal Section	20
Figure 6		cket

BURTON CONSULTING INC.

1.0 SUMMARY

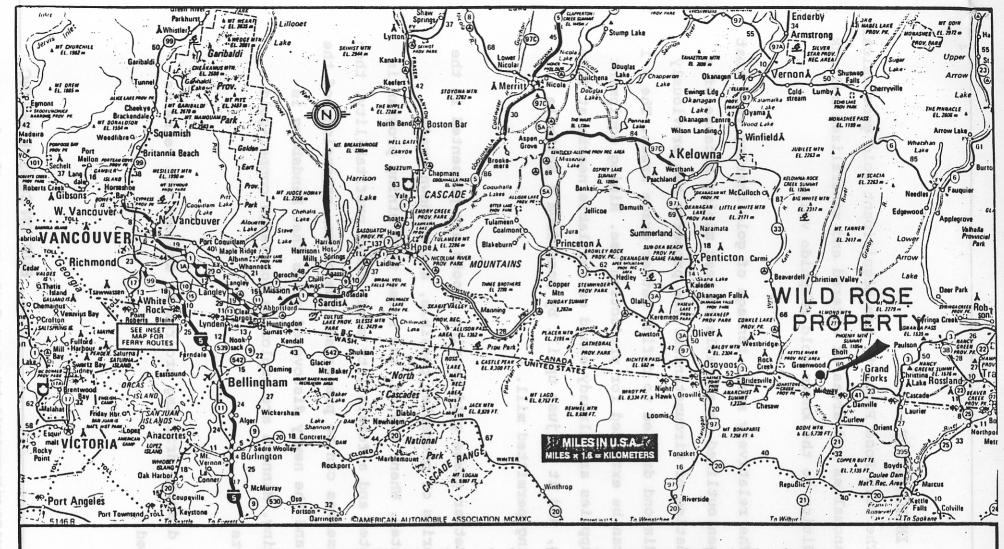
The Wild Rose Gold Property has been explored with three adits, a shaft, and an extensive surface exploration program. The main vein had mineralized sections outlined, but not yet classified as ore reserves.

17,227 tons at 0.296 oz./T Au Probable category resource. 2,970 " at 0.25 oz./T Au Possible category resource. 2,805 " at of untested grade estimate.

The 1991 exploration trenching and drilling program slightly changed the reserves picture. The probable tonnage was reduced from 17,227 to 15,989 tons and the possible tonnage went from 2,970 to 4,603 tons as a result of the 1991 program. The widths and grades of vein in holes 91-3 to 6 under the trenching were low (<5 ppb, and 0.007 oz. Au/T).

The trenching also discovered a second strong parallel vein with assays up to 0.188 oz/T Au (90 - 6240 ppb Au) across two meters, to the east of the shaft portion of the main vein. A narrower (.3 m parallel vein (1650 ppb Au) was discovered to the west. (see Figure 6) This adds to the exploration possibilities as it now established that there are at least three gold - bearing veins.

A pre-production program of underground work was previously proposed in a March 27,1991 report. This includes extending adit #1 to intersect the drilled vein, then driving a raise up through the vein to provide 716 tons of


vein for metallurgical testing. This muck could be concentrated in the nearby Robert Mines mill and the concentrate shipped to Trail, B.C. for smelting. The availability of equipment, miners, and the mill make the pre-production program financially attractive.

Based on the results of this pre-production program a decision can be made whether to mine the outlined mineralized vein.

If the mine was put into production at the rate of 55 tons per day, the mining project would take 283 operating days (about one year) to extract the good assurance tonnage. 55 tons per day is optimum for a small crew of miners working day shift. There is the possibility that more mineable vein material could be found in the mine.

Other areas of altered and mineralized rocks, and soil geochemical anomalies, are known on the property and should be explored both for more gold veins, and for large tonnage open pit potential of both the skarn and epithermal types.

Further diamond drilling is proposed to test the shaft vein extension, the two new veins, and other veins, but not the open pit type of mineralization.

RANDSBURG GOLD CORPORATION

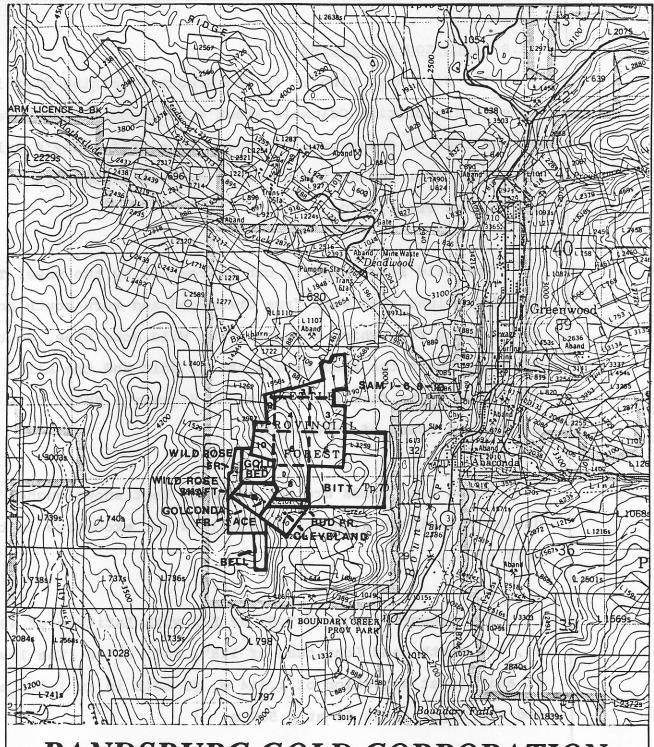
LOCATION MAP-WILD ROSE PROPERTY

GREENWOOD AREA, B.C. (NTS 82E/2)

0 30 60 90

BURTON CONSULTING INC. NOVEMBER 19, 1991

FIG. 1


2.0 INTRODUCTION

The Wild Rose Property has significant gold geochemical soil anomalies and areas of altered and mineralized bedrock in addition to the known gold sulphide veins.

The relatively small tonnage of gold bearing vein that has been outlined is amenable to test mining because of a combination of circumstances. The property has previously been diamond drilled to define better grade areas. The # 1 adit can be extended for production use. Mining equipment and supplies are already owned or available nearby at firm prices, and it is just uphill by road from a suitable existing permitted mill.

Better grade gold bearing shoots are presented in the categories of probable, possible, and unknown grade estimates. When, and if, the raise test mining program is completed and a feasibility study shows profitability, then ore reserves can be presented. There are extensions of the known and the newly discovered veins that Randsburg is exploring. Minnova are exploring for large copper-gold deposits.

A diamond drilling program to explore the veins is proposed.

RANDSBURG GOLD CORPORATION Claim Map - Wild Rose Property Greenwood Area, B.C. (NTS 2E/2) June 29th, 1992 Fig. 2

BURTON CONSULTING INC.

3.0 LOCATION AND ACCESS

The Wild Rose Mine is in the Greenwood mining division in southern British Columbia about 4.5 kilometers southwest of the town of Greenwood. Greenwood is a half - day's drive from Vancouver and a little over a hundred kilometers to the smelter at Trail, B.C.

The Wild Rose property can be reached by two ways. Take the Motherload road west from Greenwood and turn south onto the logging road which goes past the Wild Rose Mine. South from the shaft the road passes the #1 adit and the mill, joins the Boltz farm road and on to Highway 3 about 5 kilometers south of Greenwood.

These side roads are not normally kept snowploughed during the winter although snowfall is not excessive in this part of B.C.

The property is in N.T.S. 82 E/2 with Latitude of 49° , 4', 30" North; and Longitude of 118° , 43', 30" W. The lowest #1 adit is at elevation of 1,514 m, #3 adit is at 1,571 m., and the upper shaft is at 1,589 m.

4.0 CLAIMS

There are fifteen two post claims and 2 modified grid claims. Claim data provided by the company is as follows.

<u>NAME</u>

LOT NO. RECORD NO.

EXPIRY DATE

WILD ROSE OPTION

Reverted Crown Grant two post (non metric) claims

Wild Rose Fr.	⊁ 1387	2447	Oct 29 93
Gold Bed ⊀	1388	2448	Oct 29 93
Golconda Fr.	2149	552	Oct 26 93
Cleveland	2150	553	Oct 26 93
	s 1	^	

Two post (non metric) claims 2ESE 116

Ace		558	Nov	29	93
Bell	X	557 ·	Nov	29	93

Metric Modified Grid Claims

Bud Fr.(1 Bitt (4	unit) ×	5036	0ct	30	93
Bitt (4	units)	5037	Oct	30	93

SAM OPTION

Sammy 3

Two post (non metric) claims

Sam	1	1848	Oct	12	97
Sam		1849	Oct		-
Sam	3	1850	Oct		
Sam	4	1851	Oct	12	97
Sam	5	3900	Oct	18	97
\mathtt{Sam}	6	3901	Oct	18	98
Sam	8	3902	Oct	18	97
Sam	9	2439	Oct	21	97
Sam	10	2440	Oct	21	97

LEGEND (To Accompany Figure 3A)

BEDDED ROCKS

Tertiary

Penticton Group

Marron Formation

- 13 Park Rill Member: brown merocrystalline andesite, microdiorite
- 12 Nimpit Lake Member: tan trachyte, pulaskite sills & dykes]
- 11 Yellow Lake Member: purple mafic phonolite,
 monzodiorite sills
- 10 Kettle River Formation: mostly arkosic sandstone, some conglomerates & minor rhyolite tuff
- 10a- Springbrook Formation: polymictic conglomerate

Triassic

Brooklyn Group

- 9 Eholt Formation: mostly maroon & green volcaniclastics
- 8 Limestone & intercalated argillite
- 7 Sharpstone conglomerate, intercalated sandstone, shale
- 0 Skarn

Permo-Careboniferous

Attwood Group

- 6 Metavolcanics, mostly greenstones (metamorphosed basalts & andesites)
- 5 Black shale, greywacke
- 4 Limestone
- 3 Sharpstone conglomerate

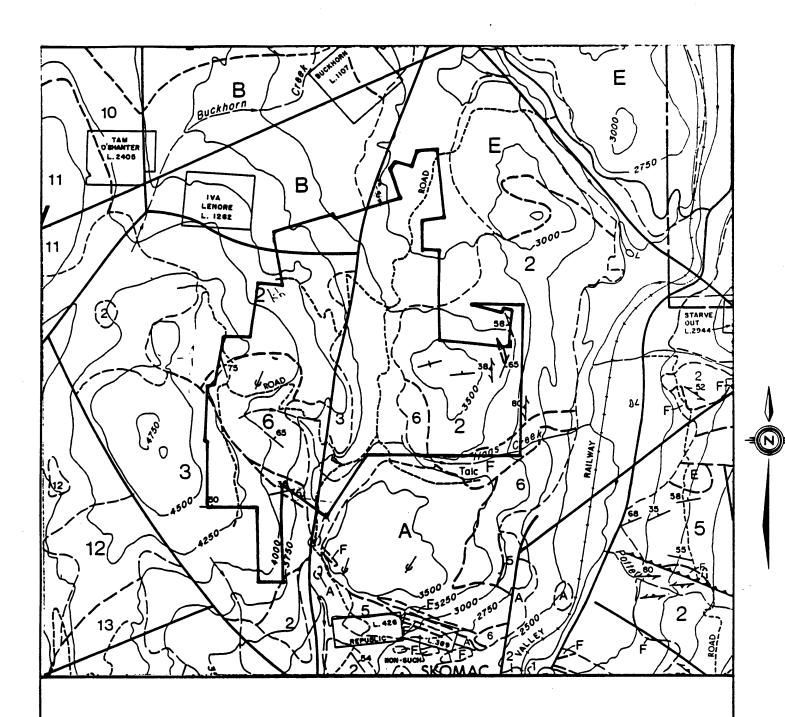
Basement Complex

Knob Hill Group

- 2 Metachert & mica schist
- 2a- Amphibolitic schist & gneiss
- 1 Marble

Igneous Intrusions

<u>Tertiary</u>


- H Coryell: syenite, monzonite & shonkinite
- G Diorite, monzodiorite, pulaskite

Cretaceous

- F Ultrabasics, serpentine, listwanite
- E Greenwood & Wallace Creek granodiorite
- D Cyclops gabbro
- C Lexington quartz feldspar porphyry

Triassic

- **B** Microdiorite
- A Old diorite

RANDSBURG GOLD CORPORATION

REGIONAL GEOLOGY MAP-WILD ROSE PROPERTY

GREENWOOD AREA, B.C. (NTS 82/E2)

(Geology after Church, 1986)

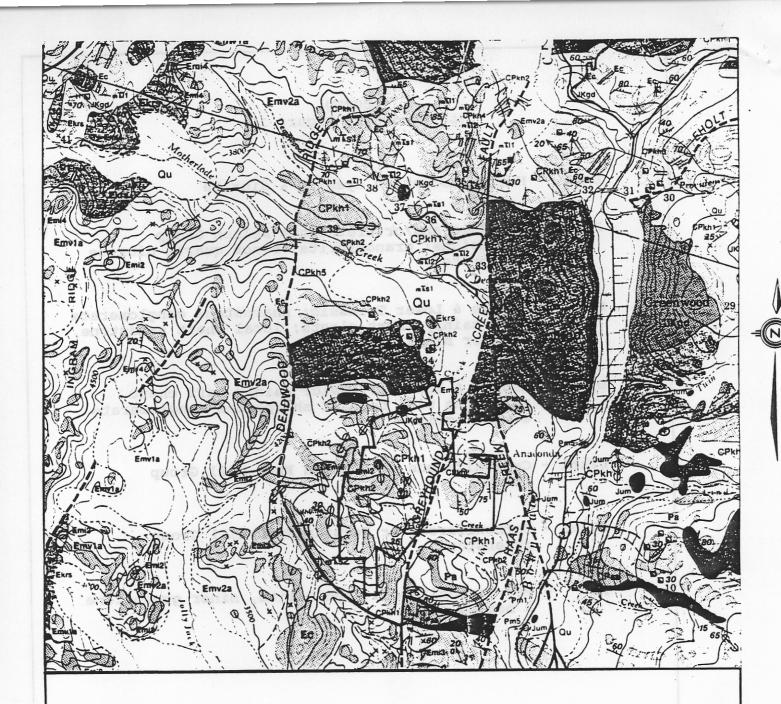

BURTON CONSULTING INC. NOVEMBER 19, 1991

FIG. 3A

LEGEND (to Accompany Figure 3B)

- Emi2 Marron Formation syenite & diorite
- JKgd Jurassic and/or Cretaceous Nelson Group
 Intrusions: granodiorite, minor quartz diorite
 & diorite
- mTs1 Middle & Lower Triassic: sharpstone conglomerate
 with mainly chert clasts; local chert sandstone,
 & minor black argillite

- CPkh2 Carboniferous or Permian Knob Hill Group
 greenstone
- Pa Pre-Carboniferous amphibolite, minor greenstone
 & bedded chert

RANDSBURG GOLD CORPORATION REGIONAL GEOLOGY MAP-WILD ROSE PROPERTY GREENWOOD AREA, B.C. (NTS 82/E2) (Geology after Little, 1979)

BURTON CONSULTING INC. NOVEMBER 19,1991 FIG. 3B

5.0 PROPERTY HISTORY AND PREVIOUS WORK

The Greenwood-Motherlode camp has had a long history of exploration. The Motherlode open pit is three kilometers north of the Wild Rose vein. Sediments, similar to those on the Motherlode, an open pit copper-gold mine, are found on the Wild Rose claims. The Wild Rose vein was first staked in 1895 about the time the Phoenix camp was becoming famous. By 1897 the shaft at elevation 1,571 m had been sunk a depth of 60 ft. and trenches dug to trace the vein for at least 300 ft. along strike. The #3 adit some 300 ft. along strike to the north at elevation 1,581 m had cut the vein 50 ft. in the adit. The #2 adit at elevation 1,526 m had been driven 110 ft., but was short of the vein. The #1 adit 693 feet long at elevation 1,514 m was aimed to hit the vein below the shaft, but did not encounter significant mineralization.

The most recent descriptions of the veins are by Dr. W.G. Smitheringale, P. Eng. in 1983, by J. Paxton, P. Eng. in 1986, and by F. Dispirito, P. Eng. - W.E. Lumley, B.Sc. in 1988. A March 27, 1991 report by myself and David Genn, P. Eng. was concerned with pre-production underground development and a test mining proposal of the shaft vein.

In 1986 a surface exploration program of geophysics, and geochemistry was completed and then a diamond drill program of holes WR 86-1 to WR 86-12 in 1986 and then in

1987 holes 87-1 to 87-8 . The vein intersections averaged 5 feet at 0.257 oz Au/T.

The vein north of the shaft was shown by the diamond drilling in 1987 to extend to depth (to the 1,514 m #1 adit level). This portion lines up well with the vein in the shaft and in adit #3. In 1991 eight holes were diamond drilled to test the along strike and down dip extensions of the gold mineralization.

Other gold bearing veins and areas are known, but not yet explored.

Minnova Inc. have entered into a joint venture agreement with Randsburg Gold Corporation and are presently exploring for large copper-gold deposits, not veins. They have run grid lines, geology, soil geochemistry, and induced polarization geophysics, and have moved on to diamond drilling. A progress report was available not available until July 1992 as the work is still in progress.

6.0 GEOLOGY

Dr. H.W. Little of the Geological Survey of Canada mapped this area between 1963 and 1965 the map was published at a scale of 1:50,000 in 1979 as Paper 79-29. (See Fig. 3B)

Dr. B. N. Church of the Ministry of Energy, Mines and Petroleum Resources published Paper 1986-2 titled GEOLOGICAL SETTING and MINERALIZATION in the MOUNT ATWOOD-PHOENIX AREA of the GREENWOOD MINING CAMP, scale of 1:25,000 (Fig. 3A).

These two maps are close, but do differ in detail.

There is considerable variation between the maps on the Wild Rose property. The greatest difference is in ascribing the sharpstone conglomerates and siliceous sediments to different ages and formations.

The two most common rock types found on the property are the Atwood Formation and the sharpstone conglomerate. Sharpstone conglomerates in the camp may occur in different ages of rocks, but in this case the associations are such that it is most likely that the sharpstone on the property is part of the Brooklyn Formation which is generally considered the favourable host for the whole Phoenix camp.

6.10 EXPLORATION POTENTIAL

The shaft vein should be traced north along strike and down dip following the apparent plunge of the mineralization. The 1991 exploration trenching discovered two more gold bearing sulphide veins with the same attitude as the shaft vein (see Fig. 6 for location nos. 519001,3,4). Grab samples by Randsburg of the partially oxidized veins ran from 0.047 to 0.188 oz Au/T plus copper values to 0.37%

Cu. Drill hole 91-6 encountered dyke, 91-3 was over the 3 m eastern vein and 91-4,5 were short of the 0.5 m western vein.

Holes 91-3, 4, and 5 showed that the southern extension of the shaft vein as exposed in the trenching did not have width or good values at depth. A reduced 1633 tons of possible category for the vein south of the Shaft Zone has been recalculated on the basis that the 1991 drilling of the vein is south of, and below the keel of the mineralized shoot.

Several of the soil geochemical anomalies could be the surface weathered representations of more gold bearing veins.

The northern portion of the property has much widespread alteration with associated gold bearing, sulphide rich, quartz veinlets. A well defined soil geochemical gold anomaly can be traced for over 1600 feet(Paxton, 1986). On the Sam claims mineralized skarn float boulders with values up to 0.023 oz/T Au and 1.12% copper were found by Randsburg Gold Corporation. This area should be explored for the source of the boulders as it bears close similarity to the Motherlode to the north and the Crown Jewel Buckhorn Mountain deposit near Chesaw just south of the border in Washington. All the three are along the eastern boundary of

the Toroda Graben, which like the Republic Graben contain a variety of important open pit and underground mines presently being operated and explored.

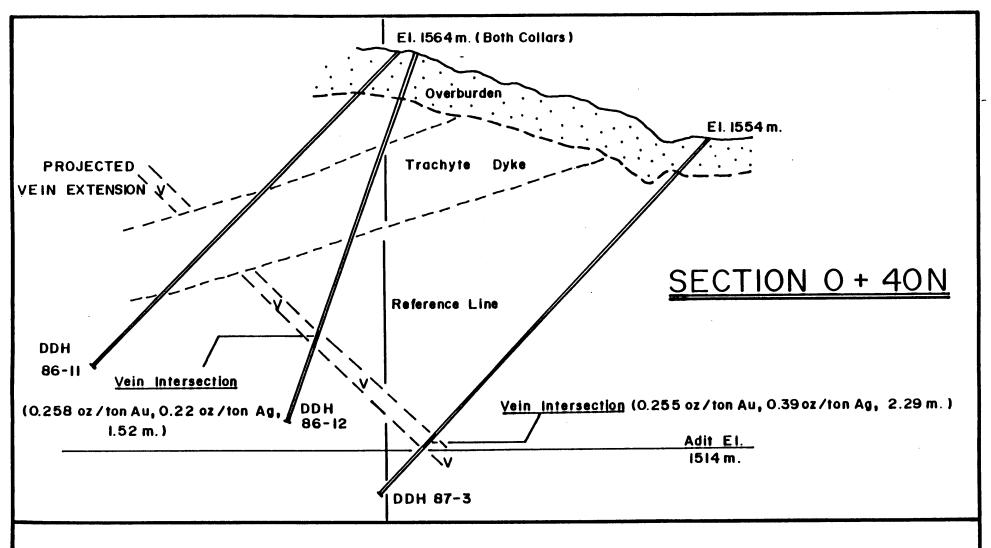
Minnova Inc., the holder of a large claim group to the west of the Randsburg property, extended their mapping and induced polarization surveys onto the Randsburg ground. They then entered into an agreement to explore the company's claims. Their intention is to search for large tonnage gold - copper deposits They have verbally stated to me that they are not interested in the veins that Randsburg are exploring. To maintain the joint venture option in good standing they are required to make property payments of \$83,000.00 and exploration expenditures of \$300,000.00 by July 1, 1993 at which time the agreement becomes a 70%-30% joint venture.

6.20 GEOLOGY OF THE VEINS

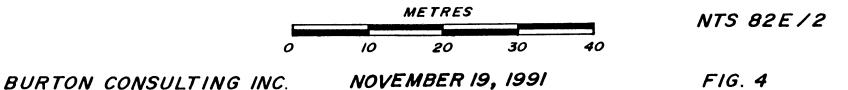
The veins are massive to disseminated sulphides (mainly pyrrhotite and pyrite) with some quartz in tuffaceous sediments that have generally been mapped as argillites. The veins are regionally conformable to the geology, striking northwesterly and dipping to the east. The local section of the sediments contains many beds which are rich in the sulphides pyrrhotite and pyrite and give the impression of stratabound sulphide zones or even syngenetic bedded sulphides. Some of the disseminated to massive sulphides carry gold values and some have none. Within the volcanic sediments, sections of the drill holes have been logged as tuffaceous beds of volcanic affinity that grade into andesitic volcanics of the Atwood Formation.

The Attwood Formation is cut by trachytic dykes,

(probably feeders of the Marron Formation) of which some are


obviously cross cutting and can be followed in several

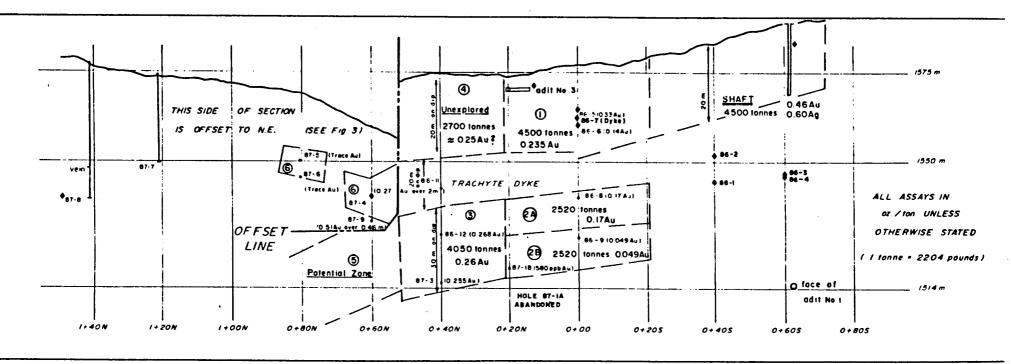
diamond drill holes. There is clear evidence that one dyke


has cut and dilation offset the vein, but has not fault

movement offset the vein. Other dykes less trachytic,

labelled greenstone, also probably cut the vein; but there

RANDSBURG GOLD CORPORATION
WILD ROSE PROPERTY - GREENWOOD AREA, B.C.
VERTICAL SECTION (APPROXIMATE) LOOKING N.W.


are fewer drill hole intersections so the evidence is not conclusive.

Depending on changes in strike and more importantly flattening in dip there could be right lateral offset on the vein caused by faults normal to the vein. Surface trenching to the south of the shaft area showed the vein to be cut by a cross fault with unknown offset.

Hole 91-2 in the 1991 drilling program intersected hydrothermal alteration similar in character to epithermal alteration (values of 35,15,<5,<5,&<5ppb Au) and then was stopped by a fault (maybe an offsetting fault?) it could not penetrate just before reaching the vein position at an elevation below adit level.

Holes 91-7 (24'-29' 1618 ppb average), and 91-8 (28'-31' 4833 ppb average) tested the vein down dip near the shaft.

Holes 91-3,4, 5, and 6 were drilled in a cross section fence to test vertical continuity of the southern extension of the shaft vein as traced by the trenching program. These holes all encountered the vein, however the deepest hole(3) was lost due the bit turning off the rods in a fault at the point where the vein was predicted. Hole 4 31'-34' ran .006 oz. Au/T, and hole 5 11'-15'ran .007 oz. Au/T. The upper

RANDSBURG GOLD CORPORATION
WILD ROSE PROPERTY, GREENWOOD AREA, B.C.
VERTICAL SECTION (LOCATION SHOWN ON FIG. 6)
LOOKING N.E. (NTS 82E/2)

BURTON CONSULTING INC.

NOVEMBER 19, 1991

0 10 20 30 40 50

NOTE FEATURES PROJECTED ONTO VERTICAL SECTION MARKED WITH

F16. 5

part of hole 91-6 was intended to intersect a wider than normal(3 m) sulphide plus quartz gold - bearing vein on the hanging wall or east side of the shaft vein. A post mineral dyke with flattened dip and strike change was cut where the vein should be.

Another parallel gold bearing sulphide and quartz vein(0.3 m) was discovered to the west of the shaft vein (on the footwall side, see Fig 6 sample 519001, 1550 ppb Au), during the trenching program. In addition there were two sub-parallel narrow(.1 m) sulphide veins discovered, one on each side of the new western vein. The new western vein is beyond the reach of any previous work or drilling and has not been explored along strike or down dip.

Diamond drill hole 91-1 was drilled a considerable distance to the east of any previous exploration work in an area preliminarily assigned to the Attwood Formation. This drill hole encountered significant sections of iron carbonate or hydrothermal alteration (<5 ppb) and a 1 foot quartz pyrite vein 60 degrees to the core that ran 2030 ppb gold, indicating that gold mineralization is not restricted to the shaft vein area.

Diamond drill hole logs for the eight 1991 holes totaling 847 feet are in the Appendix.

7.0 SUMMARY of MINERALIZATION

Shaft Vein Only

This section is taken from the March 27,1991 report

Amended June 2 ,1992. The tonnages and estimated grades of
mineralized resources are outlined, but not yet classified
as ore reserves as a feasibility report has not been done.

7.10 Probable Tonnage and Grade

Shaft zone 4,950 tons at 0.46 oz. Au/T. Area (1) 4,950 tons at 0.235 " " Area (2A) 2,772 tons at 0.17 " " Area (3) 4,555 tons at 0.26 " "

Total 17,227 tons at 0.296 oz.. Au/T.

7.20 Possible Tonnage and Grade

Area 4 2,970 tons at 0.25

7.30 Unknown Grade Estimate

Area (2B) 2,520 tons at 0.049 -too low grade to mine.

Area 5 1,485 tons at unknown grade.
Area 6 1,320 tons at unknown grade.
2,805 tons at unknown grade.

7.40 Total Tonnage and Grade

Grade and tonnages of identified mineralized vein
Probable 17,127 at 0.296
Possible 2,970 at 0.25
Unknown Grade Estimate 2,805 at ?

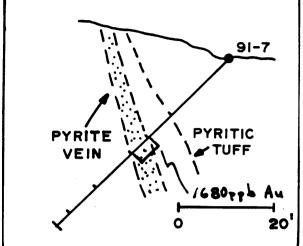
Total 22,902 tons

This tonnage is calculated only within the area of 1986 and 1987 diamond drilling. The 1991 trenching extended the shaft portion of the vein another 33 meters further south, but holes 91-3,4,&5 did not get good values over mineable

BURTON CONSULTING INC.

widths. Cutting the vein volume down by half in this extension gives an additional 1/2 X 33 X 20 X 1.5 X SG 3 X 1.1 = 1,633 tons to the possible tonnage. Leached surface sample above any zone of enrichment lying on top of the fresh sulphides ran 3270 ppb.

Hole 91-8 values of 0.15 oz. Au/T (approx) relate to the next hole north 86-6 with values of 0.14 oz. Au/T, but the 91-7 value of 0.05 oz. Au/T (approx) is significantly lower than the usual variation range in samples. Thus a portion of the shaft zone must be downgraded and an arbitrary 25% reduction takes the tonnage from 4950 tons to 3712 tons.

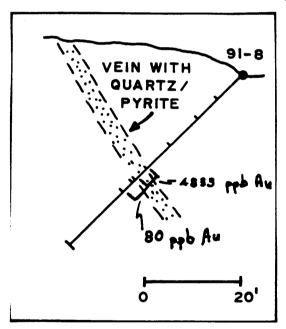

Drill hole 91-2 was planned to hit the vein below the adit level, which is the base for the grade and tonnage calculations. Hole 91-2 hit a fault before it could recover any vein.

These change would reduce the Probable tonnage from 17,227 to 15,989 tons. The Possible tonnage changes from 2,970 to 4,603 tons. Total change of probable plus possible is from a combined 20,197 to 17,622 tons.

No additional figures have been calculated yet for the two new veins discovered in the 1991 program but they are

DRILL HOLE 91-7

(In Plane of Drill Hole)



Note: dip is close to true dip, i.e. close to true thickness.

Scale: 1'' = 20'

DRILL HOLE 91-8

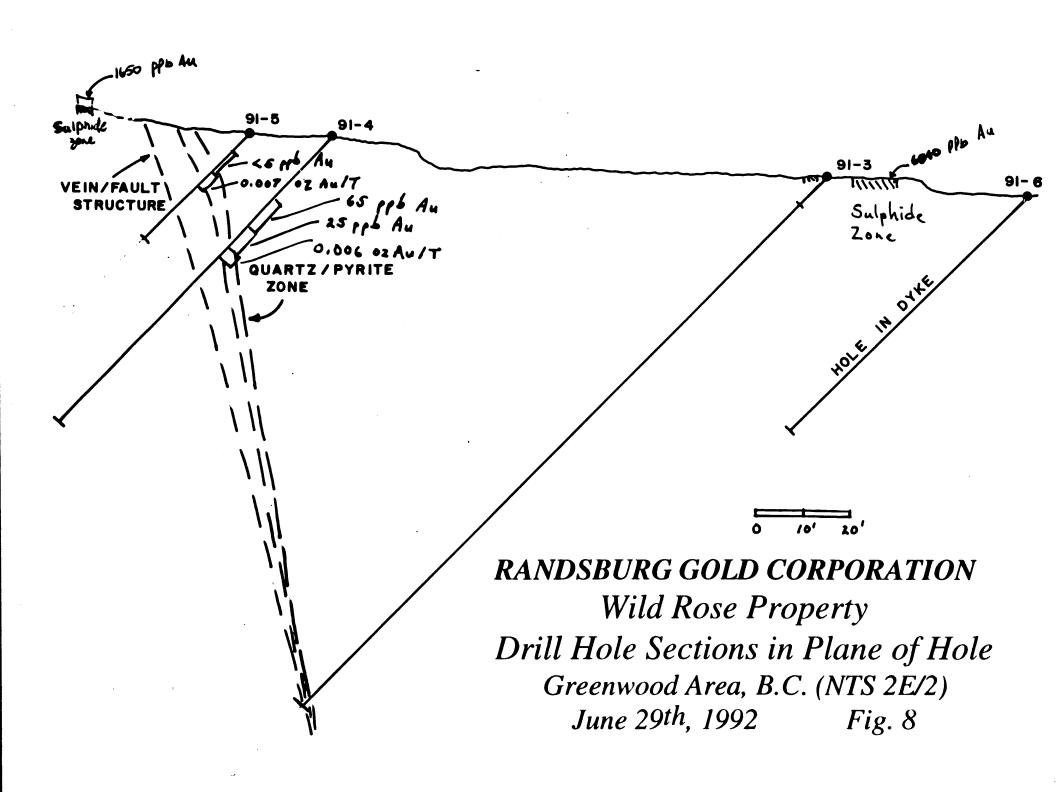
(In Plane of Drill Hole)

Note: apparent dip of vein is flatter than real dip, i.e. observed intersection is wider than true thickness.

Scale: 1'' = 20'

RANDSBURG GOLD CORPORATION

Wild Rose Property


Drill Hole Sections in Plane of Hole

Greenwood Area, B.C. (NTS 2E/2)

June 29th, 1992

Fig. 7

BURTON CONSULTING INC.

similar to the shaft vein and prime targets for further exploration.

The true test of the vein grade will be the raise mining test of 716 tons.

BURTON CONSULTING INC.

8.0 STATEMENT OF COSTS

This statement of deferred exploration costs on the Wildrose project was supplied by the management of Randsburg Gold Corporation. It does not cover the costs of this report.

Engineering	\$	14,275.92
Drilling	\$	25,410.00
Assaying	\$	1,345.28
U/G Rehabilitation	\$	10,000.00
Surface work	\$	5,101.20
Trenching	\$	19,590.00
Food and lodging		1,384.66
Travel	\$	2,245.55
Miscellaneous	\$	100.00
Total Deferred Exploration		
Costs	\$	79,452.61

9.0 CONCLUSIONS

Diamond drilling ten holes for an average depth of 250 feet should adequately explore the zones of interest on the property for the several gold - bearing veins. This program does not include work on the soil gold geochemical anomalies or other areas geologically favourable for large tonnage deposits.

A budget has been prepared for the diamond drilling, associated engineering, surface preparation, and contingency.

10.0 BUDGET

This budget is for vein exploration.

It is separate from the Minnova Inc. large tonnage program.

Diam	nond o	drilli	ing		
Say	2500	feet	at	\$30/ft	

\$ 75,000.00

Engineering

10,000.00

Surface Preparation

10,000.00

Contingency

15,000.00

TOTAL

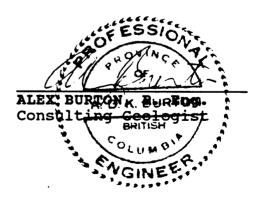
\$110,000.00

ALEX BURTON

เมสมรัพ

BURTON CANGULTING 11

11.0


CERTIFICATE

I, ALEX BURTON do hereby certify that I am an independent Consulting Geologist with offices at 5900 No. 1 Road, Richmond, B.C. V7C 1T2.

I FURTHER CERTIFY THAT:

- 1. I am a geology graduate of the University of British Columbia and am a registered Professional Engineer in B.C. with Certificate No. 6262 and a member of the Assn. of Exploration Geochemists.
- 2. I have practised my profession for over 30 years both as an independent consultant and in senior managerial capacity for major mining companies in Canada and other countries.
- 3. I have based this report on field work carried out directly by myself on the WILD ROSE PROPERTY for RANDSBURG GOLD CORPORATION, and a review of the references listed in this report. My most recent trip to the property was completed August 8. 1991.
- 4. I have no interest in the WILD ROSE PROPERTY or RANDSBURG GOLD CORPORATION, nor do I expect to receive any sort of interest. As of this date I have not yet prepared final invoices for work and this report.

Dated this 5 th day of Dec. 1991 in Vancouver, B.C. Amended Report dated June 30, 1992 Amended Report dated August 20, 1992

12.0 REFERENCES

BURTON, ALEX & GENN, DAVID

March 27, 1991 Report on Pre-Production Underground Development on the Wild Rose Gold Property, Greenwood Mining Div., B.C. for Randsburg Gold Corporation, North Vancouver, B.C. Amended June 30, 1992 Amended August 20, 1992

DISPIRITO, F. & LUMLEY, W.E.

1988; Report on the Wild Rose Claim Group, Greenwood Mining Division, B.C. for Wild Rose Resources Ltd., Vancouver, B.C.

LITTLE, H.W. 1979; Geology of the Greenwood Map-Area British Columbia GSC Paper 79-29

PAXTON, J.

1980; The Mining Potential of the Phoenix Area, Grand Forks, B.C. unpublished report prepared for Noranda Mines Ltd., Vancouver, B.C.

PAXTON, J.

1986; Geological Report on the Wild
Rose Property, Greenwood Mining
Division, British Columbia; unpublished
report prepared for Wild Rose Resources
Ltd., Vancouver, B.C.

SMITHERINGALE, W.G. 1983; Geological Report on the Wild Rose Property, Greenwood Mining Division British Columbia; unpublished report prepared for Silver Hoarde Resources Inc., Vancouver, B.C.

13.0 APPENDIX

Assay Certificates A9114402, A19115756, A9119593 (1A & 1B) A9120138, A9120464 1V-1398-RA1, 1V-1398-RD1

Diamond Drill Logs 91-1 to 91-8.

BURTON CONSULTING INC.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

Project: W Comments:

WILD ROSE

: WILD HOSE ants:

Page Number Total Pages	1-A
Certificate Date	910-JUN-91 I-9115756
P.O. Number	: :

										CERTIFICATE OF ANALY								A9115	756		
SAMPLE DESCRIPTION	PREP CODE		Au ppb FA+AA	Ag ppm	Al 1	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe	Ga ppm	Hg ppm	X F	La ppm	Mg 1	Mr ppa
19001 19002 19003 19004 19005	205 2 205 2 205 2 205 2 205 2	94 94 94	1550 3270 90 6240 265	12.0 12.8 0.2 1.6	1.13 1.20 3.08 2.43 3.16	4460 1060 50 850 275	10 130 30	<pre>0.5 0.5 0.5 0.5 0.5 0.5 0.5</pre>	6 18	0.10 0.03 4.35 1.15 0.23	17.0 < 0.5 0.5 1.0 0.5	20 109 44 23 18	69 698 196 790 1085	3750 155	>15.00 >15.00 6.37 14.65 9.25	< 10 < 10 10 10 10	< 1 < 1	0.03 < 0.01 0.05 < 0.01 < 0.01	20 < 10 < 10 < 10 10	0.20 0.81 2.56 3.22 2.71	1.80 290 2470 920 565
19006 19007 19008 19009 19010	205 2 205 2 205 2 205 2 205 2	94 94 94		<pre></pre>	2.11 2.74 0.30 3.88 3.63	30 190 35 145 30	40 30 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	· 2 · 2 · 2 · 2 · 2	0.16 0.24 0.27 0.18 1.90		14 115 6 30 34	170 189 144 234 179	55 480 126 936 142	3.44 13.95 1.30 6.40 6.83	(10 (10 (10 10 10	(1 (1 (1 (1 (1	0.01 0.07 0.02 0.17 0.13	< 10 < 10 < 10 20 10	1.58 1.94 0.19 3.02 3.64	89 580 281 1230 1281

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

Project: WILD ROSE CC: ALEX BURTON

Page Number : 1-A Total Pages : 1 Certificate Date: 19 AUG 91 Invoice No. :19119593 P.O. Number :

CERTIFICATE	OF ANALYSIS	A9119593

SAMPLE DESCRIPTION	PRE		Au ppb FA+AA	Ag ppa	Al 4	λs ppm	Ba ppm	Be ppm	.Bi PPm	Ca \$	Cd PP	Co PPM	Cr ppa	Cu ppm	Pe	Ga ppm	Eg ppa	K \$	La ppm	Mg	M PP
19011 19012	205 205	294	< 5 < 5	< 0.2 < 0.2	4.03 1.45	20 50	380	< 0.5 < 0.5	< 2 < 2	2.06 3.26 1.95	< 0.5 < 0.5	15 35 236	69 112 21	9 59	9.59 5.04	40 20	< 1	0.12	90 20	2.15	1420
19013 19014 19015	205 205 205	294	2030 35 15	7.4 < 0.2 < 0.2	1.97 3.80 1.57	210 70 5	190	< 0.5 < 0.5 < 0.5	50 < 2 < 2		< 0.5 < 0.5 < 0.5	39 11	198 68	538 243 61	14.00 8.49 3.24	20 20 20	< 1 < 1 < 1	0.18 0.21 0.23	10 10 30	1.08 3.08 0.89	540 99! 46!
19016 19017 19018	205 205 205	294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	2.31 1.15 1.07	30 25 25	40	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	2.01 0.40 2.09	< 0.5 < 0.5 2.0	12 7 7	56 75 81	133 34 19	5.49 2.59 2.52	20 10 10	< 1 < 1 < 1	0.32 0.28 0.15	40 30 10	1.32 0.50 1.26	54! 28! 68
9019 9020	205 205	294	< 5	< 0.2 < 0.2	1.32	15 10	480	< 0.5 < 0.5	< 2 < 2	1.21	0.5	7 18	74 129	24 45	2.68 4.19	10 10	< 1	0.12	10 10	1.05 1.58	495 255
19021 19022 19023 19024 19025	205 205 205 205 205 205	294 294 294	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.68 4.42 4.48 3.79 1.37	< 5 45 35 < 5 15	130 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2	0.23 1.48 3.12 0.82 0.20	< 0.5 < 0.5 1.5 2.5 9.5	20 34 38 20 12	133 199 525 310 65	71 182 94 43 151	5.42 7.45 5.72 4.67 4.04	10 20 20 10 10	<1 <1 <1 <1	0.38 0.30 0.21 0.25 0.24	20 30 10 20 30	2.10 4.07 5.42 3.52 0.56	230 102! 1040 690 390
19026 19027 19028 19029 19030	205 205 205 205 205 205	294 294 294	65 25 60 1680 110	< 0.2 < 0.2 < 0.2 < 0.2 10.4 < 0.2	1.92 3.82 3.19 1.09 4.03	50 65 95 1120	60 70 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 60 < 2	1.02 2.11 0.63 0.29 1.77	< 0.5 < 0.5 5.0 < 0.5 < 0.5	16 32 28 164 39	43 257 197 654 >	44 95 511 10000 :	4.68 6.41 6.68 >15.00 9.77	10 20 10 10 20	<1 <1 <1 <1	0.30 0.18 0.27 (0.01 0.17	40 20 10 < 10 10	1.20 4.20 2.81 1.08 4.24	526 966 566 559
19031 19032 19033	205 205 205	294	275 1430 80	5.8 2.6 < 0.2	1.85 3.10 3.70	255 1390 120	50	< 0.5 < 0.5 < 0.5	< 2 42 < 2	0.82 2.95 2.39	0.5 1.5 < 0.5	20 58 27	118 652 248	434 2760 287	5.22 13.95 6.73	10 20 20		0.31 (0.01 0.18	20 10 < 10	1.26 3.57 4.55	346 97! 86!
		ł																			

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

Project: WILD ROSE CC: ALEX BURTON

Page Number 1.1-B Total Pages 1 Certificate Date, 19 AUG 91 Invoice No. : 19119593 P.O. Number :

											CERTIFICATE OF ANALYSI						/SIS	A9119593
SAMPLE DESCRIPTION	PREP		Mo ppm		Na \$	Ni PP®	P Ppm	Pb ppm	Sb PPm	Sc ppn	Sr ppa	Ti \$	Tl ppm	U ppm	V ppm	ppa W	Zn ppm	
519011 519012 519013 519014 519015	205 2 205 2 205 2 205 2 205 2	94 94 94	< 1 < 1 < 1	< 0 < 0 < 0 < 0	.01 .01 .01	16 23 9 84 20	2770 150 1130 660 330	< 2 10 32 6	< 5 < 5 < 5 < 5 < 5	7 4 3 9 3	45 < 31 < 55 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	49 31 43 133 24	40 20 40 30 10	128 60 38 74 16	
519016 519017 519018 519019 519020	205 2 205 2 205 2 205 2 205 2	94 94 94	< 1 16 6	< 0 < 0 < 0	.01 .01 .01	18 18 35 34 76	460 250 270 300 550	10 < 2 70 36 22	< 5 < 5 5 < 5 < 5	4 2 3 3 7	17 < 93 < 48 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	31 11 28 26 78	20 10 20 10	24 16 332 132 132	
519021 519022 519023 519024 519025	205 2 205 2 205 2 205 2 205 2	94 94 94		0 < 0 < 0	.01	96 99 385 133 23	720 1220 760 350 360	22 < 2 18 10 14	< 5 < 5 < 5 < 5 < 5	9 11 14 14 2	63 < 79 < 31 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	98 109 142 89 24	20 30 40 20 10	92 232 292 210 982	
519026 519027 519028 519029 519030	205 2 205 2 205 2 205 2 205 2	94 94 94	< 1		.01	32 106 165 872 350	800 980 580 < 200 800	4 14 104 54 20	< 5 < 5 < 5 5 < 5	5 11 6 5	79 < 19 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	51 97 68 20 94	10 30 20 < 50 40	100 128 602 240 110	
519031 519032 519033	205 2 205 2 205 2	294	< 1	< 0		75 532 234	290 150 850	1905 54 8	< 5 10 < 5	3 0 7	90 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	19 61 91	20 40 30	6600 312 120	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

Project:

Comments: CC: A. BURTON

Page Number 11 Total Pages 1 Continuate these 22 AUG 91

Invoice No. :19120138 P.O. Number :

						CERTIFICATE OF ANALYSI			NALYSIS	A91	20138	
SAMPLE DESCRIPTION		REP ODE	Au ppb RUSH	Cu ppm						·		
519034 519035 519036 519037 519038	255 255	295 295 295 295 295	1740 680 1170 2070 2430	5400 >10000 6200 6600 6000				·				
519039 519040 519041	255	295 295 295	250 7850 6400	780 6500 4500								
SHOULD BE ASSAYED	!				·		·					
									·			
					·							
]	1]				<u> </u>				<u></u>	L

CERTIFICATION: Sicurif Suchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

Certificate Date: 28-AUG-91 Invoice No. : 19120464 P.O. Number :

Page North et 11

Total Lager

Project : Comments: CC: A. BURTON

			CERTIFICATE OF ANALYSIS			A91	20464		
SAMPLE DESCRIPTION	PREP CODE	Cu %					,		
519035	214	1.41					_		
}									
									:
				,		٠			
}			•]				

CERTIFICATION;

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1V-1398-RA1

Company:

RANDSBURG GOLD CORP.

Date: NOV-06-91

Project:

WILD ROSE

Copy 1. RANDSBURG GOLD, NORTH VANCOUVER, B.C.

Attn:

JEFF CIACHURSKI

He hereby certify the following Assay of 3 ROCK samples submitted NOV-05-91 by J.CIACHURSKI.

Sample Number	AU g/tonne	AU oz/ton	
519042	.24	.007	
519043	.29	.008	
519044	.22	.006	
J17044		.008	

Certified by

LABORATORIES

COMP: RANDSBURG GOLD CORP.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V/M 1T2

ATTN: JEFF CIACHURSKI

PROJ: WILD ROSE

(604)980=5814 OR (604)988-4524

7 (47) 200 10 1303 en 1 DATE: 91/11/06

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	L I PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P	PB PPM	SB	SR PPM	TH	T I	V PPM	ZN PPM	GA PPM	SN PPM	W CR PPM PPM
519042 519043 519044	1.3 1.8 2.0	23850 29820 23730	188 516 93	10 9 8	114 27 45	1.3 1.5 1.6	4 2 6	48690 37180 38550	.1 3.5 .1	57 38 30	1127 1858 1097	69440 68540 67590	850 1590 2070	23 29 27	66530 44010 35940	1466 1066 1511	1 1	90 50 40	858 451 252	270 820 880	45 45 67	5 2 2	127 59 72	1 1	46 33 15	56.4 75.3 63.9	419 336 187	1 1	1 1	22 616 13 344 10 240
																									,					
																									_			·		
																							<u></u>							
								 -						·																
								· · · · · ·		- 14				•																
																					,, ., .	 								
											-				·															-
					-														,		<u> </u>									
																											· · · · · · · · · · · · · · · · · · ·			
		··																				 	<u>-</u> -		<u> </u>					
			· · · · · · · · · · · · · · · · · · ·																					 -						
														,																

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RANDSBURG GOLD CORP.

113 W. KINGS RD. NORTH VANCOUVER, BC V7N 2L7

xt:_____

Page Number :1
Total Pages :1
Centificate Date of MAY 91
Invoice No. :19+14402
P.O. Number :

Project : Comments:

					CERTIFIC	ATE OF ANALYSIS	A9114402		
SAMPLE DESCRIPTION	PREP CODE	Au oz/T RUSH	Ag oz/T RUSH	Cu %	Pb	Zn %			
SKARN #1 SKARN #2	236 295 236 295	0.009	0.08 0.21	0.47 1.12	< 0.01 < 0.01	< 0.01 < 0.01			
					•				
			Į.						

CERTIFICATION: 11 Min Amaine

RANDSBURG GOLD CORPORATION,

Wild Rose Property, Diamond Drill Record

Hole No. 91-1

Bearing - Dip (-) 90 Size NQ Core Location 8+25 N, 6+30 W (along road)
Date May 28, 1991 Logged by A. Burton

FROM Ft.		TO Ft.	DESCRIPTION
0.0	-	10.0	Casing
10.0	-	22.0	ANDESITE, flows and bx, FINE GRAINED, dark green, minor pyrite.
22.0		34.0	ANDESITE, flows and bx, FINE GRAINED, light green
34.0	-	39.0	ANDESITE TUFFS, light green
39.0	_	44.5	ANDESITE BRECCIA, light green, 43-44.5 heavy carbonate and jasper Sample 519011 Chemex Certificate A9119593 Au ppb <5.
44.5	-	45.0	QUARTZ VEIN, pyrite 44.5-45 Sample 519012 Chemex Certificate A9119593 Au ppb <5.
45.0	-	48.0	As in 39 -44.5
48.0	-	97.0	TUFFS AND TUFF BRECCIA
		98.0	97-98 Sample 519013 Chemex Certificate A9119593 Au ppb 2030.
98.0	-	153.0	As in 48-97, more aphanitic
		153	END OF HOLE 91-1.

FILE: D2-RAN-1. DOC

RANDSBURG GOLD CORPORATION,

Wild Rose Property, Diamond Drill Record

Hole No. 91-2

Bearing: 255 Dip (-)45 Size: NQ Core

Location: Adjacent to DDH 87-3

Date: May 29, 1991 Logged by: A. Burton

Date.		uj ZJ,	1331	ogged by.	A. Durcon
FROM Ft.		TO Ft.	DESCRIPTION		
0	-	10.0	Casing	•	
10	-	25.0	TUFF AND TUFF BRECCIA Minor laminations and		
25	-	32.0	TUFF AND TUFF BRECCIA Iron carbonates and a pyrite at: 47 ft. 60 - 62 ft. (samp Chemex Certificate Au ppb 35. 64.5 - 66 ft.	amorphous ple 519014)
82	- :	147.0	TUFF, more altered an Strongly silicified w 82.5 - 83 ft. 87 - 88 ft. (samp Chemex Certificate Au ppb 15. 95 - 97 ft.	with pyrit ple 519015	e at:)

82.5 - 83 ft.
87 - 88 ft. (sample 519015)
Chemex Certificate A9119593
Au ppb 15.
95 - 97 ft.
101 - 103 ft.
106 - 107 ft. (sample 519016)
Chemex Certificate A91195993
Au ppb <5.
117.5 - 119 ft. (mostly quartz)
120 - 120.5 ft. (quartz)
125 - 126 ft. (myrmeketic quartz)
127 - 132 ft. (mostly quartz)
137.5 - 138 ft. (mostly quartz)

147 - 169.0 TUFF, becoming more chloritic

169 - 172.0 TUFF, mostly quartz and chlorite plus pyrite

172	- 182.0	TUFF, banding chloritic
182	- 202.0	TUFF, becoming finer grained amorphous and siliceous
202	- 228.0	TUFF, dark grey
228	- 232.0	WHITE CLAY ALTERATION
232	- 234.0	STRONG WHITE CLAY ALTERATION
234	- 248.0	STRONGLY SILICIFIED, plus white clay alteration 234 - 238 ft. (sample 519018) Chemex Certificate A9119593 Au ppb <5.
238	- 248 ft.	(sample 519019) Chemex Certificate A9119593 Au ppb <5.
248	- 252.0	ALTERED CHERTY ARGILLITE
	252	END OF HOLE 91-2, Hole caved and was lost.

. .

FILE: D3-RAN-1.DOC

RANDSBURG GOLD CORPORATION, Wild Rose Property, Diamond Drill Record

Hole No. 91-3

Bearing: 255° Dip (-)45 Size: NQ Core

Location:

Date: August 2, 1991 Logged by: A. Burton

Date.	A	agust	۷,	Logged by. A. Burcon		
<u>FROM</u> Feet		<u>TO</u> Feet 7.0		DESCRIPTION		
0.0				Casing		
7.0	-	15.0		LAMINATED CHERT AND ARGILLITE, with minor Tuff		
15.0	-	17.0		GRADATIONAL CHANGE, by 15 ft. becoming predominately INTERBEDDED TUFF AND ARGILLITE		
17.0	-	51.0		BEDDED TUFFS, with sedimentary breccia or conglomerate of chert, argillite, and tuff fragments Quartz fragments noted		
51.0	-	58.0		SEDIMENTARY BRECCIA OR CONGLOMERATE, noticeable quartz fragments		
58.0	-	65.0		SEDIMENTARY BRECCIA, mostly tuff fragments		
65.0	-	74.0		ARGILLITE AND TUFF FLYSCH, plus sedimentary breccia		
74.0	-	82.0		TUFF AND ARGILLITE, interbedded with increasing green tuff		
82.0	-	91.0		TUFF AND CONGLOMERATE, with quartz eyes and black sedimentary fragments		
91.0	-	104.0		TUFF, green fine grained		
104.0	-	145.0		FLOW, andesitic		
145.0	-	155.0		INTERBEDDED TUFF AND ARGILLITE, up to 1" beds with increasing quartz grain fine conglomerate 150 - 155 ft. (sample 519020) Chemex Certificate A9119593		

Au ppb <5.

155.0 - 156.0 FAULT, pyrite and quartz in vugs
(hole reamed back from 156 - 146 ft. due to
caving.
155-156 (sample 519021)
(Chemex Certificate A9119593)
Au ppb <5.

156.5 bit turned off and hole was lost in fault before encountering vein. END OF HOLE 91-3.

NOTE: THE TUFF IS BEDDED MUCH LIKE AN ARKOSE

Hole No. 91-4

Dip (-)45 Bearing: 255 Size: NQ Core

Location:
Date: August 4, 1991 od byza A Byzet

Date:	Aug	gust 4,	1991 Logged by: A. Burton
FROM Ft.		TO Ft.	DESCRIPTION
0.0	-	3.0	Casing
3.0	-	6.0	POOR RECOVERY, 1 ft. core chips recovered Some pyrite in sedimentary breccia
6.0	-	7.0	SEDIMENTS, rusty, siliceous, pyrite, veinlets and blebs
7.0	-	11.5	SEDIMENTS, rusty and siliceous, some pyrite veinlets and blebs 6 - 11.5 ft. (sample 519025) (Certificate A9119593) Au ppb 20.
11.5	-	15.0	TUFF,
15.0	-	17.0	TUFF AND SEDIMENTS,
17.0	-	19.0	SEDIMENTS, with minor pyrite
19.0	-	31.0	SEDIMENTS, MINOR TUFF, little pyrite 17.0 - 25.0 ft. (sample 519026) (Certificate A9119593) Au ppb 65.
			25.0 - 31.0 ft. (sample 519027) (Certificate A9119593) Au ppb 25.
31.0	-	34.0	GREY TO BLACK ARGILLITE, pyrite laminations

and blebs, best sulphide vein section 31.0 - 34.0 ft.

(sample 519044 0.006oz Au/T) (Certificate 1V-1398-RD1)

- 34.0 41.0 ARGILLITE, dark grey to black little pyrite
- 42.5 47.0 TUFF, FINE BEDDED SEDIMENTS, no pyrite
- 47.0 48.0 FAULT BRECCIA
- 48.0 49.0 TUFF, ANDESITIC
- 49.0 57.0 FLOW, fine grained green
- 57.0 82.0 TUFFS AND FLOWS, green
- 82 end of hole 91-4.

Hole No. 91-5

Bearing: 255 Dip (-)45 Size: NQ Core Location:5.5m west of hole 91-4

Date: August 5,1991 Logged by: A. Burton

FROM - FEET -		DESCRIPTION
		Casing
2.0	5.0	FAULT altered and rusty gouge (only 1 ft of chips recovered)
5.0	15	CRYSTAL TUFF BRECCIA, MINERALIZED VEIN pyrite blebs at 9' disseminated pyrite from 5'-11' 5-11 sample 519022, Chemex Ctfct A9119593 Au-<5ppb 1" quartz vein @ 15' 11-15 sample 519042, 0.007oz Au/T Min En Ctfct 1V-1398-RA1
15.0	19.0	GREY TUFF 15-17 sample 519043, Ctfct 1V-1398-RD1
19	20	BLACK ARGILLITE
20	22	RUSTY TUFF
22	31	INTERBEDDED GREY TUFF and GREY-BLACK ARGILLITE
31		END 91-5

FILE: D6-RAN-1.DOC

RANDSBURG GOLD CORPORATION,

Wild Rose Property, Diamond Drill Record

Hole No. 91-6

Bearing: 255 Dip (-)45 Size: NQ Core

Location: West edge of road

Date: August 6,1991 Logged by: A. Burton

FROM - TO DESCRIPTION

Feet - Feet

0.0 - 6.0 CASING

6.0 - 71 DYKE

Note: Hole was laid out by A. Burton to collar in dyke, pass into volcanic sediments and then penetrate the vein east of the shaft vein. Flattening of the dip of the dyke meant the hole stayed in the dyke.

71 End hole **91-6**.

Hole No. 91-7

Bearing: 266⁰ Dip (-)45 Size: NQ Core

Location: North of shaft at west edge of road

Date: August 7, 1991 Logged by: A. Burton

FROM - TO Feet - Fee	
0.0 - 6.0	
6.0 - 15.0	TUFF, with quartz veinlets and pyrite, rusty
15.0 - 17.0	TUFF, with disseminated pyrite, fresh
17.0 - 17.5	PYRITE VEINLET
17.6 - 24.0	TUFF, with increasing pyrite content 17.0 - 24.0 ft. (sample 519028 - Chemex Certificate A9119593) Au ppb 60
24.0 - 29.0	PYRITE VEIN, massive to banded in Tuff, mainly pyrite, visible chalcopyrite, and

galena

24.0 - 29.0 ft. (sample 519029 -Chemex Certificate A9119593 Au ppb 1680, Ag ppm 10.4, As ppm 1120, Bi ppm 60, Cu ppm >10,000

24.0 - 29.0 REASSAYED AT 1 FT. INTERVALS

		Au (ppb)	Cu(ppm)
24.0 - 25.0	(Sample 519034)	1740	5400
25.0 - 26.0	(Sample 519035)	680	>10,000
25.0 - 26.0	(Additional Ass	ay) -	1.41%
26.0 - 27.0	(Sample 519036)	1170	6200
27.0 - 28.0	(Sample 519037)	2070	6600
28.0 - 29.0	(Sample 519038)	2430	6000
24 - 29	Average	1618	
	-	cont'd.	Page 2

29.0 - 39.0	SEDIMENTS, arkosic tuffs, some argillite, some breccia Some pyrite blebs and veinlets
	29.0 - 39.0 ft. (Sample 519030 110ppb)
39.0 - 47.0	TUFF, altered pinkish crystal tuff
47.0 - 51.0	TUFF, fine pale green with sedimentary fragments
51 0	END OF HOLF 61-7

Hole No. 91-8

Bearing: 198⁰ Dip (-)45 Size: NQ Core

Location: North of shaft, west side of road

Date: August 7, 1991 Logged by: A. Burton

FROM - TO DESCRIPTION Feet - Feet 0.0 - 7.0 Casing 7.0 - 13.0 INTERBEDDED TUFF, volcanic sediments, no argillite Some pyrite

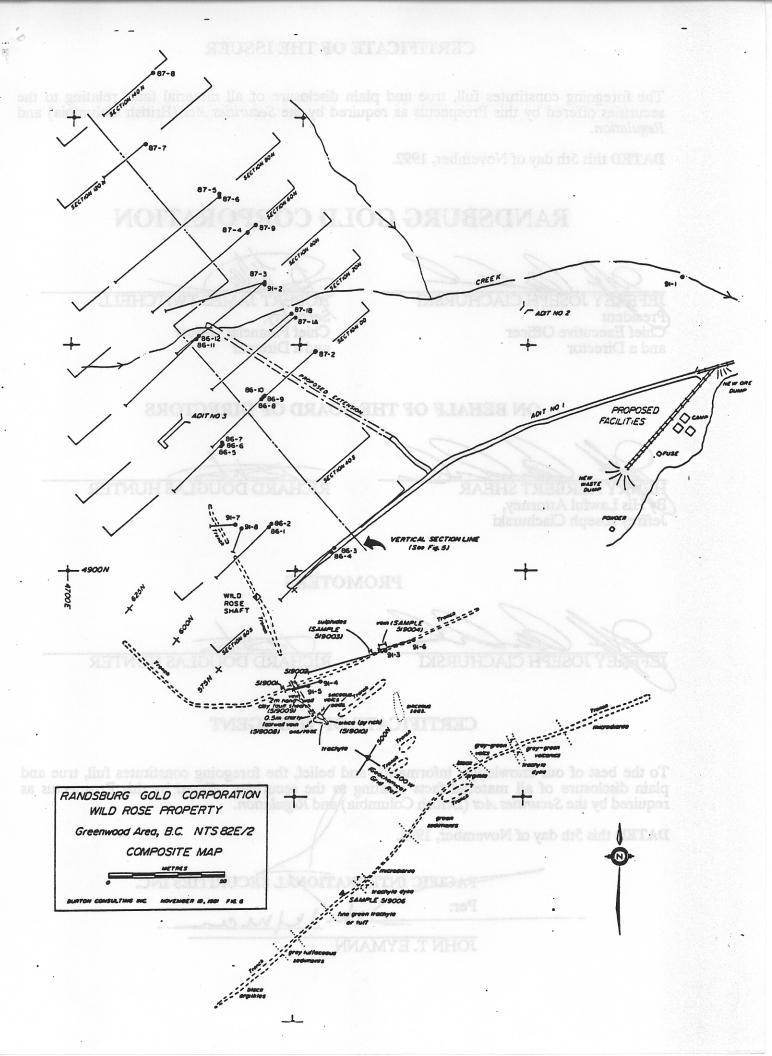
13.0 - 28.0 INTERBEDDED TUFF AND SEDIMENTS, fresh (no argillite or breccia)
Blebs and veinlets of pyrite
21.0 - 28.0 ft. (Sample 519031 -

Chemex Certificate A9119593 Au ppb 275, Ag ppm 5.8, Cu ppm 434)

28.0 - 31.0 VEIN, with quartz and pyrite

28.0 - 29.0 ft. nearly massive pyrite

28.0 - 32.0 ft. (Sample 519032
Chemex Certificate A9119593


Au ppb 1430, Ag ppm 2.6, Cu ppm 2760,

As ppm 1390)

28.0 - 31.0 REASSAYED AT 1 FT. INTERVALS Au(ppb) Cu(ppm)

28.0 - 29.0	(Sample 519039)	250	780
29.0 - 30.0	(Sample 519040)	7850	6500
30.0 - 31.0	(Sample 519041)	6400	4500
28 - 31	Average	4833	

- 31.0 35.0 TUFF (crystal tuff)
 Considerable pyrite 31 32 ft.
 Blebs and disseminations of pyrite 32 35 ft
 32.0 35.0 ft. (Sample 519033)
 Chemex Certificate A9119593
 Au ppb 80, Ag ppm <0.2, Cu ppm 287,
 As ppm 120)
- 35.0 51.0 BEDDED TUFFS, sedimentary, fine grained Minor pyrite, blebs of pyrite at 40 ft.
- 51.0 END OF HOLE 91-8

CERTIFICATE OF THE ISSUER

The foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act (British Columbia) and Regulation.

DATED this 5th day of November, 1992.

RANDSBURG GOLD CORPORATION

FFEEY JOSEPH CIACHURSKI

President

Chief Executive Officer

and a Director

FOBERT JAMES TWITCHELL

Secretary,

Chief Financial Officer

and a Director

ON BEHALF OF THE BOARD OF DIRECTORS

HERY HERBERT SHEAR

By His Lawful Attorney, Jeffrey Joseph Ciachurski RICHARD DOUGLAS HUNTER

PROMOTERS

JEFFEY JOSEPH CIACHURSKI

RICHARD DOUGLAS HUNTER

CERTIFICATE OF THE AGENT

To the best of our knowledge, information and belief, the foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act (British Columbia) and Regulation.

DATED this 5th day of November, 1992.

PACIFIC INTERNATIONAL SECURITIES INC.

Per:

JOHN T. EYMANN