THE GEOLOGY OF THE STANDARD MINE

OF THE WESTERN EXPLORATION CO. LTD.

The Standard mine is situeted in the Slocan Mining Division $2 \frac{1}{2}$ miles east of the town of Silverton, B. C. The central mine workings and the camp are at 3600 feet elevation, or 1840 feet above Slocan Lake.

The Company's 250 ton flotation mill, built in 1923, is situated on the lake shore and treats ores from their Standard, Mammoth, and Enterprise mines. In the following notes the Standard mine only is considered.

IISTORY

The Alpha, Standard, and Emily Edith claims, the nucleus of what is now the Standard Group, were located in 1892 under separate ownerships. Production from the Alpha began almost at once from an outcrop of high grade galena, but comparatively little development work was done on it before 1910. The claim was amalgamated with the Standard about 1895.

About 1908 the Emily Edith group was amalgamated with the Standard, and in 1913 the Standard Silver-Lead hining Company wes formed and operated the property until 1921 when the whole district was shut down by a strike. From 1921 until 1928, when the property was acquired by the present company, the mine was operated in a small way by leasers.

The main Standard orebody did not outcrop and was found during 1909 in No. 4 tunnel. Previous to this there had been a small production, but heavy production began immediately after. Up to the end of 1947 the production of the group was 410,374 tons of ore of a gross value of $\$ 11,495,832.00$, the inighest production of any property in the Slocan district. Dividends paid were $\$ 2,700,000.00$.

Since 1928 the present company operated the mine a short time in 1937 and from 1940 to the summer of 1946 when it was shut down by a strike. Work was resumed in 1947 and the mine is now operating.

The ratio of ounces of silver to the percent of lead has averaged about lid to 1 . No figures are available on the felative proportions of lead and zinc. In the early days.was of no value and was discarded, but gradually became more valuable until at present the value of the zinc produced exceeds that of the lead.

GENERAL

The productive part of the mine is in an area of highly crumpled, sheared and faulted rocks, and tunnels
mostiy require timbering; most stopes require square-sets and filling.

When the Western Exploration Co. Ltd. first started work in the mine more than half of the tunneis were caved at the portals and in places underground and were in large part inaccessible through raises from the tunnels which were still open. Also all the main stopes were filled or caved and have never been reopened. Ore production since 1937 has been obtained from extensions of old stopes and from the discovery of new veins in the lode. Lue to heavy ground and the generally erratic nature of the orebodies it has never been feasible to develop any great amount of ore reserves ahead of stoping.

Geological records covering the old caved portions of the mine are decidedly sketchy or entirely lacking, and since the writer has been familiar with the mine only sinco 1937, the following notes are of necessity based on what workings were accessible at that time, a few re-opened crosscuts and drifts, and new work.

DIVELOPMENT

The Alpha claim has been developed by seven adits on the lode, of which the highest is at 4800 feet altitude and the lowest at 4200 feet. In length these adits vary from 170 feet to 1000 feet, and total about 4700 feet exclusive of crosscuts and raises. Most of the tunnels are now partly caved and inaccessible.

The remainder of the Standard group, including the Emily Edith, has been opened by twelve turnels, from the Y tunnel at 4060 feet altitude through Nos. 1 to 7, 7-A, $7-1,7-C$, and 8, the latter, the lowest, at 2760 feet altitude. Tunnels were generally started on the lode but a few began with a short crosscut. Nos. Y, 1 and 2 are short; Nos. 3, 4, 5, and 6 are progressively longer from No. 3, 1000 feet, to No. 6 which follows the lode for 4400 feet from the portal, exclusive of numerous crosscuts and secondary drifts on minor veins. No. 7 follows the lode for 4500 feet, plus numerous crosscuts. Nos. 7-A, -B, and -C average about 1200 feet in length and No. 8 is about 2700 feet, both exclusive of crosscuts of which there are many. At one time raises connected all levels from No. 7-C to No. 2 but at present only a few raises from No. 6 through 5 to No. 4 are open. No 7 tunnel is now being opened and at the present time is about two thirds completed but has not yet reached the most promising section. Total drifts and crosscuts on the property approximate $7 \frac{1}{2}$ miles. Commercial ore has been found over a vertical range of about 2000 feet, although
ndwhere more than 1000 feet vertically below the surface directly above. Probably upwards of 90% of the oro extracted has been found within a vertical range of 500 feet, between elevations 3350 and 3850.

GENERAL GEOLOGY See also C.G.S. Memoir 184.

The claims are underlain by the Slocan sediments which are of late Triassic age which are intruded by a small stock of granodiorite which outcrops in Emily creek, just east of the Standard claim, at 4000 feet altitude. The sediments are also cut by numerous salic dikes and rather rare mafic dikes.

The sediments in the vicinity of the mine consist of dark gray to black, silicious, carbonaceous, and sometimes slightly calcareous argillites, generally moderately massive, and minor dark quartzites. The structure is extremely complex due to intricate folding, crushing and faulting and has never been satisfactorily worked out in the mine workings in so far as the folding is concerned. The general strike of the strate in the surrounding region is northwest and, qceording to Dr. Cairnes (Memoir 184), anticlinal on the Alpha olain and dominantly symclinal on the Emily Edith. There are, however, in some of the intermediate and lower workings strong indications of a general easterly to northeasterly strike, slightly more easterly than the main ore trend, and a southerly dip at moderate angles. This statement is mede on the strength of the trend of a somewhat vague belt of quartzite which occurs in the hanging wall of the lode, and on the observation of a few scattered bedding planes. No stratum has been found which is distinctive enough to be used as a marker.

The small granodiorite stock with its numerous guophyses and the dikes are believed to be genetically connected with the Nelson granite batholith of probable Jurassic age which outcrops within a quarter of a mile southwest of the No. 8 tunnel, and is presumed to underlie the mine at some depth.

LOCAL GEOLOGY

In the vicinity of the mine workings the apophyses and dikes are usually highly altered to a soft rock of light gray or pinkish color with generalily granules of quartz, some feldspar, scanty altered biotite and hornblende and much sericite. The rock is usually more or less porphyritic and is locally called "porphyry". In the footwall of the lode the porphyry usually appears as definite dikes with definite strike and dip but within the lode it is extremely irregular and faulted, dragged and mixed into the argillites like plums in a pudding. It was intruded prior to the main faulting and the mineralization and is host to a very considerable, though minor, proportion of the ore.

The chief host of the ore is argillite which occasionally grades up to an impure quartzite. It has been extensively sheared and varies from moderately solid areas through all atages to sinall, unsteble, lenticular fragments surrounded by graphitic slips, and to strong gouges.

The lode is a she red ard broken zone whose footwall coincides with the footwall of a major post-porpnyry pre-mineral fault along which moveneat continued well into the period of minerolization. Its strike, while somawhat sinuous, is about $6.65^{\circ} \mathrm{E}$, and the dip ir om 20° to 80° southeast, with an average of about 45°; it is steeper to the west and flatter to the east. The width of the lode varies fror 30 feet or less to a maximun of nearly 200 teet in the productive part of the mine. Minor graphitic sheare, parallel or interseeting at small anglos, ocour within the lode.

The lode has been followed anderpround in the Standard eroup for nearly a mile and a half, and on the surface (See Fig. 1) has been traced through the Scho and Tiger rroups, and is believed to join up with the Ifaho and Queen Ress lode, a distance of over four miles.

The Kobin shear and lode lies jn tie hancine wall of the Stanlard lole, appesrs to dip considerably steeper and should intersect it in dopth, hut has not been identffied in the Standard wortings. The tancels are coved and little is ksown abont it, oxcept that, it has been traced vith a fair degree of ceritainty into the Mamoth mine.

Fisure 2 show the central ene most productive parts of tunnels No. 5 and No. 6 and an intermediate level betweer them; these are frirly typical of other parte of the productive aren. To avoid confusion erifts and crosscuts sre omitted bat orebodies, veins, falte, and shears and porphyry are shown in \mathfrak{m} ier gs they can be deterrined, for parts of the older workines are inaccessible. In the drawing the Intermediate and No. 5 levels have been moved southeast ot right ancles to the strike 300 and 600 feet, respectively, from their true positions with respect to No. 5 so that the drawines will not overlie and confose each other.

At 1500 feet in from the portal of No. 6 tunnel the lode is cut and faulted to the left about 100 feet by 8. pre-mineral fault which was re-opened during mineralization. Its strike is approximately north and south, end the dip 10° east. It is rsther obscure in No. 6 tunnel but is well exposed in No. 5 tunnel, and its surface trace is indicated between the portals of tunnels Nos. 3 and 4 by a natural trench in the overburden end lower down by a draw. On No. 4 and No. 7 tunnels it cannot be seen on account of caving. It consists of a sheared and crushed zone about 15 feet in width ${ }_{\wedge}^{i n}$ which there is sparse disseminated mineralization,
with a fow lenses and small veins which were in part stoped.
The block of ground, the most prodactive part of the lode, bounded for 1200 feet by the main footwall shear and by the cross-fault and extending vertically from about Ho. Z tunel to an anknow distance below No. 6 is strodgly sheared and crushed and contained the "BiE" rich Standard oraboy, sometimes called the "Million Dollar Stope", and many other orebodies and veins, and has prodaced porhaps 90\% of the ore extracted to date.

The erratic nature of the orebodies is wellawn the sketch, but there is a definite tendency for the larger ones especially to follow along or close to the main footwall jouge. Between the larger orobodies along the footwall there may be either a definite profitable vein, a vein too narrow or low grace to work, a series of small disconnected lensos of ore, or nothing on sufficient defiaition to follov. It is not unlikely that the locus and shapes of the orebodies is in part deterined by the structure 0 the argillites, but proof of this has not been obtained. It is certain, however, that complex fracturing and brecciation have had a strong e"rect.

The ores consist of a mixture of brecciated country rock, yuartz, sphalerite asually in disseminated grains, and galena in grains and stringers which often cut the quartzsphalorita ajgregates or lie betwean them. In datail the internal make-ap of the "main" type of orebody is as erratic as their distribation and shape. Boundaries, except where the footwall is on the main shear, are usually marked by intersecting or curving slips of quite local extent with sinall gouges. There 1 is a tendency for the better ore within an orebody to occur in irregular lenses or boulders separated by lower srade ore or waste and seall gouges. The writer has never seen the ore from the old "Big" stope which at one time is said to have shown taenty feet of "clean galena" but it is to be presumed that in general the above description of the ore will fit that stope also.
"I" Vein is somewhat in the nature of a blister on the hanging wall of the main vein. (See also Fig. 3). On tunnel No. 5 it starts out from the "Big" stope, swings in a flat arc and disappears near the main footwall. In tunnel No. 4 it starts out of a stope on the west, swings almost a semi-circle of 150 feet radius and disappears shortly before reaching the main footwall. Its downward contination below tunnel Mo. 5 is apparently ended by the " 560 " fault, for it has never been found underneath it; there is a poor barcen slip or vein underneath the foult on No. 5 level but a crosscut a few feet lower shows no sign of it. "I" vein is distinguished by an unusual amount of quartz containing scattered and bunchy sphalerite and galena and carries a higher content of silver than the main orebodies.

It varies from a fow inches to fifteen foot in aikth and has produced a consiāerable tonnage oil ore.
"640" Vein is a split off fiom "I" vein which strikes nearly parallel to the min footwall and dips 75° south. Downard it ands against the " 660 " fault where it spreads out to several times its normal width. To the aastward and unard fts limits are not snow bat it is expected to join "I" vein again in both airections. It varies from six inches to three or four feet in width and carries comperstively rich silver-lead-zinc ore in a quartz gangue. In part it occapies a fiesure in argillite and porphyry and in part lies between argillite and a wide hand of quartz into which irr gular sphelerite filled fractures cxtend.

The "620" vein, No. S tanel, is very similar to the " 640 " vein in sizo, attitude, and filling. Its oxtont in am direction is as yet unlonm.

The "Spur" vein (Fig. B Section B) is typical of several others which are not show but which in the agsregate have fornished a moderats tonnaga of high grade sphalarite, sonetines be utifully banded. They vary from a few inches to throe feet in midth and are aroompanied by vexy little gngue. They brouch off from larger orebodies at various angles, coatain littlo salona or rook-rracments, and usially pinch ont within a hundred feet.

The "650" fault has approximatoly the same dip and strire as the Croes-fault, previously mentioned, it does not, howevar, cut the footwall shear but appears to be an offshoot from it and does not fault the footwall orebody on the Intorinediate shown in Fig. 2 although it cen be traced throuch it. It forms the footwall of the "660" orebodit, acted as a dan stopping the downward continuation of the "640" voin, and appareatly "I" vein also. It therefore must be essentially pre-mineral. On account of passins into caved country it cannot be traced very far upwards, and has not been derinitely identified below the Intermediate, although there is a strong suggestion that it may eccount for the abrupt end of the ore shown in Fig. 3 Section C. There are one 0 two other faults in the mine which secm to be of similar type but which are not yet well enough exposed to allow definite conclusions.

There are many other small faults of widely varying strikes and dips in the mine which are not known to cat the main footall shear or the footwall orebodies but which do fault some of the minor veins up to maximum of ten or fifteen feet, usually but not invariably to the right.

MINERALOGY

 earn of which may ocour comparatively pure in veins, stringers or lenses, or they may be intiagtely mixed. Witn these occur siall and varying anounts of pyrite, chaleopyrite, gray-copper, sid rarely ruby-silvor. The sancue consistis of crishcd rock, - either arsillite, quartzite, or porphyry - quarte, calcite, sh siderite. The relative amowite vary wider. fron olsce to olace. me ore choractor. Turies not only in the proportions of lese and zinc but also fom massive to dissominated, and in the amont and character of the smpue. Comparatively clean salens is reported to heve beer rined from the hlpha, from the "Big" orebody of tha Sbardard es well as parts of some veins, wnd from the Emily Edith, a verincel range of nearly gjoo feet. The great bulk or tio ore tiat has oeen mined in recent fears has bean mixed sphslecibe and stirna, with whe formes stionjy predoninating, and sone n arly clean sparlerite.

Massive white quartz appears to have been the first mincad Gevositu and typicsiy ocours in large lenses and somedines as voins. betalife ninomsie aro somevimes absant bat sphalenita accompaied by small amounte or prrite dnisiju ocours tin widely varying anount dissoninated through the quarta. pio looation of tio wambz jodies woes not

 The pentot o: quartz doposition is believed to lave continued in derpasimg intensity throurhout the period an mineralization.
johalerite witin minom amonnts of geloine and pyrite ailt quretz wes next in order and occurs as otiongers in minor fractures in tie rocks and in re-frncturez quartz, and in a rew instuces in short narrow veins up to four foet in viath consistint of masaive sphalerito with very minor blebs of glassy quartz. In some of these veins there is a little sulena, in others none. sphaisrite occurs from the highest to the lowest parts of the mine but increases in relative importance with depth, althourh not uniformly for some of the nigher level stopes have been trorked for zinc and showed very little lead; it is also strongly predominant eround the esstenn limit of the oreshoots.

Gelent occurs sparsely disserimated with the sphaloitite ir places, but generally oecurs in more missive form in stringers, small veins, and lenses in fractures in country rock, quartz, and sphalerite. For instance stringers and lenses of ralens occur frequently in fractured quartzsphalerite bodies, either as a narrow band along one wall or in irregular fractures in the quartz itself. In many localities it is quite evident that tho bulk of the salena was deposited later than the sphalerite.

Gray-copper is not usually visible to the naked eye, but wherever noted it is generally associate? with the galena, but sometimes with the sphalerite hoth as grains and tiny seams within thelother minerals, and in the form of films along cracks. It is probably contemporeneous with the galena in lares part with its deposition poasibly extending a little loter.

Calcite and siderite are rarely found in any importrint amounts, but in small amount they are present in the ore from all parts of the mine, gonerally as small seams and stringers. Siderite increases slightly in amount with depth and has a tendency to oceur in association with sphalerite rather than with galena. Calcite is more uniformy distributed so far as depth is concerned, and a considerable oroportion of it appears to hove been deposited after all other mineralization had ceased.

The sequence of events leading to the formation of the Standard orebodies is incicitea to have been as follows:1. Folding and fracturing of the sodimentary rocks during the fintrusion of the Nelson batholith, and the injaction of the porphyry stock with its dikes and irregular apophyses.
2. Faulting, orobably due to differential cooling of tho underlying nagma.
3. The entrance of mineralizing solutions of high temperature depositing chieflr quartz at first, followod by quartz, spiolerite, siderite, and a little galena.

* He-openine of old fractures and perhaps the formation of some new ones.

5. The entrance of cooler mineralizing solations which deposited the bulk of the galena, a little sphslerite and gangue minerals.
6. Final calcite deposition and weak post-mineral fracturing.

ORE CONTKOLS

If certain beds of the sedimentary rocks, or theis folding, have had any influence on the location of the orebodies it has escaped the writer's notice. The extent of the shearing, crushing, and faulting and to a minor extent the presence of porphyry appear to have been the goveraing factors. Some of this fracturing was und oubtealy cerased by the change in dip from around 70° to 30° such as occurs between No. 6 and No. 4 tunnels in the central and wester part of the productive zone.
from the underlying granite batholith along the trough formed by the intersection of the rain footwall gouge with that of the cross-failt, and possibly also along the trough between the main shear and faults of the "660" type, and deposited their minerals in the crushed and fissured rocks above the trough wherever they could penetrate.

The downward extension of these troughs and the broken block of ground has been very inadequately explored on No. 7 tunnel level, judging by the old maps of that area, and favorable develoments are expected after No. 7 is completely reopened.

March 30,1948.

