000090

FEPORT
ON THE GEOLOGY OF THE
MAMMOTH MINE
OF THE
WESTERN EXPLORATION CO. LTD.
SIIVERTON B. C.

To
Mr. A. M. Ham, General Manager, Silverton, B. C.

The following is based on a three weeks study of the workings of the Mammoth hine. All workings were open and acessible except No. 1 Tunnel, and the two short tunnels on the ridge to the west of the main workings which were omitted on account of snow conditions; and exceptriconsiderable parts of the large stopes on Levels 5,6 , and 7 which are filled. None of the surface could be seen on account of snow.

As foumtaz the location, property, and other physical features of the promenty are familiar to you they will be omitted in this report.

Reference ${ }^{5}$ will be made funtimemen to the/iork reports of Dr. C. D. Cairnes for the Canade Geological Survey in Memoirs 173 and 184.

GENERRAL GEOLOGY: (C. G. S. Memoir 173)
The claims are underlain by rocks of the Slocan Series of Triassic (Mesozoic) age, which here consist of argillites and argillaceous quartzites which are generally quite massire. They are generally, throughout the region, much folded and faulted. The argillites consist of very fine grained massive rocks ranging from dark brown to bleck and from argillite to quartzite; the great bulk of the rock at the Mammoth being of intermediate type.

The intrusive rocks mentioned by Dr. Cairnes (Mematr 184, p. 76) as occuring on the group were not found in the mine workings.

MINE GEOLOGY:
The rocks exposed in the mine are massive, and generally intermediate between argillite and quartzite
in composition. On the whole, there jis very little chenge in the character ifbh of the rock to another. Except at a few points, bedding planes are ill defined and difficult to determine; in the immediate vicinity of the vein they are generally obliterated. What bedding data is to be found 1 is often thafturnizt indefinite and sometimes conflicting. Partings between different beds are sometimes quite prominent as in the outer part of No. 7 adit, but generally are no more prominent or definite thant joint planes, or shear zones, shech as appearf in No. 4 adit chastsst and may $\frac{\text { represent the Buffalo, or other, vein. }}{\text { rep }}$

Narrow bands of varying shades, corresponding to slight changes in composition, (see also Memoir $28 Z 173$ bottom p. 52) have been taken as the deciding factor in the bedding. While this criterion is occasionally contradictory it predominently indicates a rather unifform strike of $N 30^{\circ}$ to 40° fw and dip of 40° to 50° wet southwest. These show most clearly in the Level 7 crosscut tof the surface, the most easterly crosscut south on Level 7, the south crosscut on Level 6, in the shortin Level 3 ${ }^{\text {and and in the level } 2 \text { aditcrossect. }}$ K/vale A wide spreadגsystem) of joints and fractures strikes N 20° to 35° E and dips 30° to 500 southeast; it is often very easily mistaken for bedding forlthis agrees tax well with the course of the so-called Buffalo vein in Level 1 , is not widely different from the vein-shear along the Level 4 adit crosscut, and fagrees fairly with the some of the fracures and walls(?) in the large stopes on levels 6 and 7.

VEIN:
The Mammoth vein lies in a very strong shear-zone striking east and west and dipping 45° south. The zone varies from ten to seventy five feet, or more, in width
and consists of highly sheared and breccisted rock which has been more or less altered and mineralized. The movement along the shear zone is not indicated, but is probably gonsiderable and has been of long durationas The planes of olcaciouch hreaiationt akioning one greatest moveraent are repfesented हy thick bands of gouge accompanied by considerable graphite. There are many cross fractures within the shear, some of which are mineralized, focalcy forming almost a linked-vein pomineterecture.
and fractures
Many small spurs/tpx\& $\alpha \neq / t \phi$ turn off from the main shear but most of them appear to curve back into tha/axym/aheay it again. Probably some of them etteria do not curve back to the main vein but gradually pinch out. There is no evidence that any of them forb are of eny importance except where practically in contact with the ox main shear.

The vein-zone filling consists largely of gouge, (sparingly impregnated with fine pyrite and) and crushed rocky with minor amounts of gray-copper, and a little quartz. In the ore areas, galenayand zinc-blende have been deposited with calcite, quartz, and siderite. Occasional specks of chalcopyrite were also noted.

Continued movement in the shear-zone has often brecciated the sphalerite and sheared the galena. The ore minerals were probably deposited largely in open spaces in the shear but also to a considerable extent have replaced the more breceiated portions of the rock.

Pyrite appears to have deposited before the galena and sphalerite, although continuing to a slight extent during the deposition of the latter minerals. Zinc-blende deposited before the galena, generslly, although there is an evident overlap. Quartz appears to have deposited sparingly through the whole cycle; calcite deposited before and during the deposition of zinc, and during at least the first part of the galena deposition. The mineralizing solutions are generally believed to be connected in origin with the underlying granite.

4

Dr. Cairnes states that the deposition of siderite is essentially intermediate between calcite and sphalerite, and that gray copper deposited with, or just before, the galena.

There are no marked changes between the deposition in the upper and lower levels of the mine, there is however a slight decrease in quartz as depth is attained and a carespounding increase in calcite and siderite. There also soomot
 both galena and blende seem to hove a tendency to crystallize more coarsely. These changes were noted in the examination of specimens. To check the change in the rind ratio of lead to zinc, mine samples wert taken after October 1935 to the end of operations in Februsy 1936 were compared.

Those taken from Levels 2 and 3 averaged $\mathrm{Pb} . \mathrm{Zn}=1: 2.20$ and from Levels 6 and 7 $P b: Z n=1: 2.58$
in the ratio of lead to zinc

- an increase of approximately $17 \% /$ from the upper to the
lower levels.
NOTES ON WORKINGS: Level 1 Not visited. Dr. Cairns reports that the Mammoth vein is cut, and slightly faulted by the Buffalo vein which was followed in by the adit. Level 2. The vein was followed continuously for 800 feet, of which about 400 feet was on ore. There is a strong suggestion of "linked veins" in the vicinity of Sta. 209 and Sta. 219. The footwall branch of the vein, north of Sta. 2l0, while it shows no ore on the level, is strong and should be further prospected above the level. With this exception there are no seemingly important branches or spurs on the level. No indication whatever was found of an
intersecting vein, although the so-cslled Buffalo vein should pass through at about the head of the main raise. Some detail is probably covered by close lagging.
Level 3. This level has been opened for 540 feet, of
which 235 feet is on ore. Near the eest end of the level
there is a marked widening of the vein with a narrow, very weakly ninerilized zone in the center. This apears to be the continuation downward of the wide structure on Level 2 above.

At the west end of the level the south spur wein of the Level $3 \frac{1}{2}$ should be about 40 feet in the henging wall; it does not seem probable thet it contains ore, but it is advisable to crosscut to it to make certain. The Buffalo (?) vein should intersect this level just east of the main raise, but no indication of its presence can be found.

Level 4. This level is 630 feet long on the vein and shows esst 480 feet of ore. The wide vein-zone on/Level 3 narrows before reaching this level. The extreme west end of the level opens the two veins of Level $3 \frac{1}{2}$ fust about where they join on the dip. The long north crosscut at Sta. 110 shows rather broken ground throughout most of its length with probably subsidiary to the main shear weakly mineralized shearskat 100 and 150 feet; these have no evident importance. The adit from the surface to the vein follows a weakly minedrized vein, or shear, fromhthe surface to/8ta/408 for a distance of nearly 300 feet. This consists of Weak an or fractures having roughly the strike of the Buffalo(?) vein in X Tunnel 1. Little movement is indicated along the shear, which much resembles bedding planes; there is slight mineralization over a width varying from one to ten inches. There is no indication where this crosses the of adrat Atatar main vein, unless it be a few small seams near the first crosscut east of the main one;-which is further east than the
vein shou:d be.
Ievel 5. Most of this level, 260 feet long, is on ore.
On account of extensive stope-filling it was found impossible to work sut the geology satisfactorily. Fracturing and crushing are intense over a width of fifty feet, much of which is well mineralized. There appear to be several parallel $\sqrt{6}+\boldsymbol{w}-\mathrm{strands}$, sometimes connected by diagonals of a linked-vein type. There is no definite evidence of an intersecting Vein, nor is there any ovidence that there is not.

A short crosscut should be driven north from the vicinity of Sta 509 to prospect for the vein-strand in the footwall.

Level 6. This level covers a length of 235 feet of which approximately 125 feet are on ore. In the stope, conditions are almost entirely obscured by filling up to the fourth floor (31 feet) which has little more than one third the area of the sill-floor. According to the evidence obtainable, ore made along east west fractures (main vein) chiefly, but also along fractures runing approximately $N 60^{\circ} \mathrm{E}$, and, according to verbal reports, approximatelv $N 20^{\circ} \mathrm{Fi} \mathrm{O}_{\mathrm{I}} \mathrm{I}$ was unable to confirm this last by any visible data. At fifty feet west of the main raise the west drift makes a sherp turn to the northward
(N $55^{\circ} \mathrm{W}$) on stronf fracturing and non-commercial vein matter.
As there is no comparable turn on either the 5 th or the 7 th
from near the face of the drift levels the hanging wall should be exploredffor another straid of the vein. The south crosscut shows nothing of at the stazt particular interest. The north crosscut/shows six feet of medium mineralization atzthazemat in a strongly fractured zone strixing N 72° w. Eight feet north and parallel to it there is an eight inch stringer carrying considerable galena, sphalerite, and calcite Twent. three feet further north in the crosscut there is a four foot fracture showing weak mineralization. The vein-strand at the start of the crosscut
has some possible prospective value and should be followed to the westward.
more or less
Level 7. The drift on this level has followed the vein for 930 feet, of which little more than 120 feet is on ore.

Immediately \boldsymbol{H} east of the main raise ore occurs over a width of fifty feet, with one strand of the vein to the norththe stope. ward not yet cutin This stope is not so completely filled as those on Levels 5 and 6 and most of the vein- and strand-walls can be seen. These have a general strike a little north of east and a dip of 45° to 55° south. There is also some strong fracturing accompanied by ore, which runs from $\mathbb{N} 15^{\circ}$ to $35^{\circ} \mathrm{E}$ and dips from 50° to 80° eastward. This corresponds reasonably well with the attitude of the Buffalo(?)vein on Levels 1 and 4. - East of this stope the first crosscut south, and the drift, show a more northerly strand of the vein, contain g weak mineralization, which should be found a few feet back in the footwall of the main stope. South of this strand, in the crosscut, there is a five foo bone of broken rock followed by a five foot vein-strand showing stroking fracturing but rather weak mineralization . Twenty feet south of this there is a three foot zone of shearing with little mineralization which is apparently the barren extension of sone of the strongest shearing and mineralization in the stope. Eighty feet east of this crosscut there is another broken one which is completely filled with fore and cannot be seen.

The drift in this section is north of the vein and barely touches the footwall of the most northerly strand.

West of the main stope the foin mineralize ion of the vein-strands weaken and most of them pinch to mere seams, although some of the more northerly strands have not been
opened west of the main raise and thetd may possiblz contain ore there. In the main crosscut the hanging-wall strand (at Sta. 置要 709) is the strongest and has been followed to the end of the west drift. Throughout this distance the fissure is strong but the vein generaily narrow and the mineralization weak. At Sta. 720 a spur showing weak mineralization leads off from the vein to the eastward ${ }^{\text {and }}$ may possibly connect with doxe one of the strands of the vein east of the main raise. One or more crosscuts should be driven to prospect the footwall west of the main raise; extansion of the main crosscut north for another 50 feet would be good prospecting.

The first crosscut east of the stope should also be extended southward another 30 feet, on the possibility that 3.11 the strands of the vein have not yet been cut by the present crosscut. The second crosscut should be clesned out.

Nothing of particular
interest shows in the main orosscut tot the south. The
Buffalo vein, if present in the stope, should pass through
the crosscut but if so was not recognized there unless 2
Mownineraltirt
rather weak fracture passing through $S t a \eta 15$ is it.
Orebodies east of raise on Levs 5, 6, \& 7:
The orebody as opened on these three levels is somewhot different, at least in degree, from those on the upper levels. The rocks are much more widely fissured and crushed and mineralization is more widespread. The reason for this is not entirely clear. There is no conclusive evidence that the Buffalo vein, or any other, cuts the Mammoth vein at these points, although there is slight indication thot it may, especially in the stope on Level 7. 7 .
 Vein when appears in No. 1 tunnel and in the crosscut to N Level 4, a slight change, only, in dip and strike would place it at the east end of the stope on Level 7. On the way down it would also pass through the stopes on Levels 5 and 6 ,
and should
in the vicinity of the main raise on Levels
2, 3, and 4. It seems probable that this intersecting wot always identilable uactralcy ficuent
 accounts for the large bodies of ore on the three lower levels; presumed why larger bodies of ore do not occur at the 保ntersection on the upper levels is not clear. There is also evidence of a curve in the Mammoth vein, convex to the south, castiniong on the three lower levels near the main raise. This would cause more intense crushing and fissuring of the rocks and tend to promote the circulation of the mineralizing solutions at that point.

FUTUEE PKOS IECTS: The Mammoth shear-zone is strong and may be confidently expected to extend for consider able distances in all directions. It is likely that it may be possible to trace it on the surface both east and west when the snow goes; Also it may be possible to locate its intersections with other shears or veins on the surface. It is at such points that the chances are best for the finding of further oreladien aside from what surface data may be obtained later, it it is advisable to drive Levels 4 and 7 west underneath the tunnel on the next ridge west of the mine, where some ore has been found. As it is planned to have a geological study made of the surface this summer, further recommendations for lateral work may best be left until that is done.

There seems little question that the shear zone will extend a long distance below the present workings, - probably thousands of feet. As to the continuation of ore to depth - It has been the experience in the slocan district
that orebodies are lenticular in shape and of limited vertical length, and that there is a compar tively rapid change in mineralization as depth is attained, due probably to changes in temperature during deposition. Experience has shown that generally the upper parts of individual orebodies

Quartz is more plentiful in the top and bottom parts of the deposition zone, and siderite in the middle.

At the Mammoth, silver, lead, and quartz are mote prominent in the upper levels. In the lower levels all three have decreased somewhat but are still present in important amounts, together with increased amounts of zinc and calcite. I would appear therefore that the Level 7 is maneron-les thaw
centers the orebody,
is reasonable to expect several hundred feet of profitable ore below it, with silver-lead gradually decreasing and zinc increasing. This orebody has already been followed for about 1200 feet on its dip which is about as far as any of the orebodies of the district have extended, and further than most, so that while the mineralogy appears good for a further considerable downward extension of the ore, too great an additional depth must not be expected.

DEVELOPMENT RECOMmENDED:
In the orebody as a whole
as considered above, pay-ore occurs in shoots separated by material too lean to be profitable. In order not to miss any of these and to develop them for stowing, small prospect raises should be run between all levels at not more then 100
foot intervals. In so far as possible it would be well to start them in ore, or hoared the ore known on the level above.

Most of the important dev
elopment has already been mentioned but for conveniende is tabulated below.

Work Recommende ${ }^{\text {d }}$

This program entails a lot of work and naturallycannot all be done at once. It would be well to concentrate at between levels first on the raising and crosscutting for unopened strands of the vein; in other words to completely develop and prospeot the ground within the liditis/bt/tik contral area, giving first preference to the upper levels. well tofrive the main mevel 4 westward

It would also be Further developemnt in depth may, I belleve, be deferred until more intensive development of the central area is finished and more leteral exploration completed.

Some
In places it would be advisable to drive short crosscuts from stoves and raises where there is reason to set other strands of vein may exist. In the case of stoves, a 45° raise into the hanging wall serves both to prospect the wall and to furnish waste for filling, if ore is not encountered. CONCLUSION:

The Mammoth shear-zone is exceptionally strong and should extend for a long distance. The orebody had already extended for a good distance in depth as compared with other of the larger properties in the district, but may be reasonably expected to extend for some hundreds of feet deeper before betorebecoming too low grade and zingy to mine. There should be good chances of finding other orebodies on the surface along the course of the shear, and especially if intersecting veins can be found. Under these conditions I believe that considerable work exploration and prospecting work is justified. No attempt has been made in this tox dot examination to estimate the quantity or value of the ore now partially developed. To make an accurate estimate would necessitate the taking of a large number of maples be in addition to those already taken, and considerable raising etc to more thoroughly block out the ore. There That there is a very considerable tonnage of pay ore at average prices for the metals there can be no doubt.

